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Oscillations in flow occur under many different situations in natural porous media, due to tidal, daily or
seasonal patterns. In this paper, we investigate how such oscillations in flow affect the transport of an
initially sharp solute front, if the solute undergoes nonlinear sorption and, disregarding molecular diffu-
sion, mechanical dispersion. By homogenization, we show that after many cycles, the transport converges
to a zero convection, pure nonlinear diffusion problem. The impact of the oscillatory flow requires an
adjustment of the dispersion coefficient, where instead of the modulus of the particle velocity, we have
to use its time averaged value. Physically, this agrees with a velocity defined by the distance travelled by
particles in solution, divided by the time needed for that displacement. The nonlinearity of the sorption
reaction is retained in the concentration distribution of the mixing zone, because in the large time limit,
this distribution is not Gaussian but asymmetric. With numerical simulations, we show that this conver-
gence may occur relatively fast (say 10 cycles). The implication of the diffusion like large time behaviour
is that the transition zone continues to spread beyond the zone of convective oscillation.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

occur at different time scales. Atmospheric forcing that has an
oscillatory aspect is not limited to precipitation/evapotranspiration

When studying flow and transport in natural porous media in
field conditions or in packed columns in the laboratory, steady
state flow is often assumed. However, there are many important
cases where transient flow needs to be considered (Dagan et al.,
1996, Dentz and Carrera, 2003).

A special case of transient conditions is that of oscillating flow,
where flow in one direction is compensated by a complete reversal.
For conditions studied in soil science and other geosciences, for
instance, seasonal fluctuations are often oscillatory. Examples are
seasonal wetting and drying, although wetting and drying may
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cycles, but also related with fluctuating air pressures (Neeper,
2001; Neeper and Stauffer, 2012; Jaeger and Kurzweg, 2003). In
fact, oscillatory gas exchange for porous media has been investi-
gated decades ago when Raats and Scotter (1968) considered flow
that varies sinusoidally with time and investigated the dispersive
behaviour due to such oscillations. The rate of dispersion can be
described as a function of the Peclet number and the dimensionless
amplitude of displacement, and this was experimentally tested by
Scotter and Raats (1968) and elaborated numerically by Scotter
and Raats (1969).

More recent is the work on fluctuating interfaces in shallow
groundwater by Eeman et al. (2012, 2016) and Cirkel et al.
(2015). At a small time scale, daily oscillations may occur at the
plant root surface due to the day-night pattern of transpiration
(Espeleta et al., 2016). Also at drinking water wells, oscillating

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ces.2018.02.045&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ces.2018.02.045
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:C.J.v.Duijn@TUE.NL
mailto:Sjoerd.vanderZee@WUR.NL
mailto:Sjoerd.vanderZee@WUR.NL
https://doi.org/10.1016/j.ces.2018.02.045
http://www.sciencedirect.com/science/journal/00092509
http://www.elsevier.com/locate/ces

CJ. van Duijn, S.EAA.T.M. van der Zee / Chemical Engineering Science 183 (2018) 86-94 87

conditions may be part of management (Pauw et al., 2016) to keep
filters open (free from iron oxide deposits) by periodically extract-
ing and discharging water. In underground energy or chemical
storage, oscillating conditions may be important, for instance for
seasonal underground heat storage and harvesting. In the context
of tracer dispersion in estuaries, Kay (1997) investigated oscillating
flows due to tidal reversals. Of interest is also the analysis by Pool
et al. (2016), who considered oscillatory movement for an inert
(conservative) solute. Their mathematical analysis, supported by
numerical as well as experimental observations, revealed the
impact of oscillations on the width of a mixing zone between
two solutions with different concentrations. At large times, a sym-
metrical, Gaussian, distribution of the concentration front devel-
oped and they provided expressions of e.g. the width of the
concentration front (which displaces) as a function of time.

Oscillating flow and transport has also been considered in
chemical engineering. Though not considering a porous medium,
Harvey et al. (2001), Reis et al. (2004) and Zheng and Mackley
(2008) investigated mixing in a reactor with oscillatory flow. There
is also earlier work for baffled tubes on mixing (Dickens et al.,
1989) and heat transfer (Mackley and Stonestreet, 1995) for such
flow conditions. Recently, Wang et al. (2017) considered mass
transfer for a pulsed disc and doughnut (PDD) extraction column.

As Neeper and Stauffer (2012) observed, the combination of peri-
odic flow of the fluid in the pores, on the long term leads to diffusion
type of behaviour, that can be captured with an effective diffusion
coefficient. This was also the key point of Cirkel et al. (2015), who
combined oscillating flow with cation transport, for the case of non-
linear (Gapon type) cation exchange. The latter speculated, based on
an approximation of the governing equations, that the effective dif-
fusion coefficient comprises a generalization of the so-called
mechanical dispersion coefficient. Whereas in classical theory the
mechanical dispersion coefficient equals the product of a formation
factor (the dispersivity) and the absolute value of the pore water
velocity, for oscillatory flow the time average of the absolute value
of pore water velocity should be used. Therefore, for zero net dis-
placement of a mixing zone, the velocity in the mechanical disper-
sion term is given by the travelled distance of particles in either
direction divided by the time needed for this displacement.

With regard to the work by Cirkel et al. (2015), it is worthwhile
to emphasize that nonlinear adsorption/desorption essentially dif-
fers from the nonreactive or linear sorption and transport beha-
viour. As Van Duijn and Knabner (1991, 1992) and Van Der Zee
(1991) showed, for appropriate initial and boundary conditions
(steady flow), traveling wave behaviour is found, as nonlinear
sorption counteracts dispersional spreading. For reversed condi-
tions, sorption and dispersion enhance each other, leading to
rapidly spreading fronts: rarefaction waves (RW). For oscillatory
flow, Cirkel et al. (2015) showed that these types of waves are
not observed after a number of oscillations.

T

It is the scope of this paper, to reconsider the transport of a non-
linearly reacting (adsorbing/desorbing) solute under an oscillating
flow regime and to investigate the large time behaviour of the
solute front and mixing behaviour. In particular, we show that at
large times, neither TW nor RW spreading is obtained. In fact,
the front approaches a pure diffusion/dispersion type of spreading
that is non-Gaussian due to the nonlinear reaction, and with an
adjusted mechanical dispersion coefficient.

2. Problem statement

We consider a flow field describing an oscillating pore water
velocity W(t), with period T and mean (V) = 0. This flow field trans-
ports a reactive solute through an infinitely long and one dimen-
sional column. Solute transport is given by the well-known
convection-dispersion equation. In case of nonlinear adsorption
of the solute subject to an initial step front, the transport is
described by Convection-Dispersion-Reaction Problem (CDRP)

dp(u) ou ou
ot +V(t)&_D(t)W XeR, t>0, (1)
1 x<0
0)= ; 2
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where u >0 denotes a scaled solute concentration, the function
@(u) is strictly increasing and describes the accumulated solute
on a volumetric basis, t is time, x is position, and D is the hydrody-
namic dispersion coefficient (Bear, 1972). We assume sorption to be
given by the Freundlich expression:

pu)=u+Aw” A>0, O<p<l1. (3)
Further, we ignore molecular diffusion, hence

D(t) = oV (1)l (4)
with o > 0 denoting the dispersivity. We rewrite (1) as

1 dpu) ou_ du
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where P(t) is a function given by V(t)/|V|(t), i.e. (Fig. 1),

V(t) { 1 in{V>0},

P(t) = —~ = 6

(®) [V(t)] -1 in{V<0}. ©

Next, we introduce as new time scale

r:/o V(2)|dz, (7)

which is the total travelled distance of the fluid particle in time t.
With v(x, 1) = v(x,T(t)) = u(x,t) and P*(t) = P*(7(t)) = P(t), we find
the transformed problem

T

Fig. 1. . lllustration of the velocity as a function of time and the function P(t), where T is the cycle period.
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