Accepted Manuscript

Modeling surfactant adsorption/retention and transport through porous media

Michel Romero-Flores, Alejandro J. García-Cuéllar, Alejandro Montesinos-Castellanos, Jose Luis Lopez-Salinas


PII: S0009-2509(18)30110-6

DOI: https://doi.org/10.1016/j.ces.2018.02.048

Reference: CES 14072

To appear in: Chemical Engineering Science

Received Date: 24 October 2017 Revised Date: 20 February 2018 Accepted Date: 28 February 2018

Please cite this article as: M. Romero-Flores, A.J. García-Cuéllar, A. Montesinos-Castellanos, J. Luis Lopez-Salinas, Modeling surfactant adsorption/retention and transport through porous media, *Chemical Engineering Science* (2018), doi: https://doi.org/10.1016/j.ces.2018.02.048

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Modeling surfactant adsorption/retention and transport through porous

media

Michel Romero-Flores ^a, Alejandro J. García-Cuéllar ^a, Alejandro Montesinos-Castellanos ^a, Jose Luis Lopez-

Salinas a *

^a Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey,

N.L., México, 64849.

*Corresponding author.

E-mail address: jllopezs@itesm.mx (J.L. Lopez-Salinas)

Tel: +52 (81) 8358 2000

Abstract

The mathematical modeling of adsorption/retention behavior of surface active materials in a porous medium

composed of a complex network of macropores, mesopores, and micropores was studied herein. In this paper,

we propose a model for these processes and discuss selecting boundary conditions for parameter fitting,

analyze tracer and surfactant signal sizes, contrast calculated results of reversible and irreversible adsorption,

and address the difference between local equilibrium and the rate-limited process. We used experimental data

from the literature to adjust the parameters of the proposed model, taking macroporosity and mesoporosity

into account. Our results show that at least two types of porosity should be used for modeling porous media.

Moreover, the boundary condition at the outlet was found to significantly affect the output response. This

effect is greater in systems with low Péclet numbers (high dispersion and/or diffusion, i.e., N_{Pe} < 5).

Therefore, an appropriate boundary condition should be used if an analytical solution is employed to fit

experimental parameters for the tracer. In addition, we observed that two input signal characteristics, namely

slug size and rectangular pulse, proved to be of great importance in determining the output response when

they are smaller than the corresponding values that would cause the system to reach adsorption saturation. A

local equilibrium assumption is only valid when the flow conditions result in a Stanton number greater than

1

Download English Version:

https://daneshyari.com/en/article/6588551

Download Persian Version:

https://daneshyari.com/article/6588551

<u>Daneshyari.com</u>