Accepted Manuscript

Formulation and validation of a computational model for a dilute biomass slurry undergoing rotational mixing

Michael A. Sprague, Jonathan J. Stickel, Hariswaran Sitaraman, Nathan Crawford

PII:	\$0009-2509(18)30092-7
DOI:	https://doi.org/10.1016/j.ces.2018.02.030
Reference:	CES 14054
To appear in:	Chemical Engineering Science
Received Date:	29 September 2017
Accepted Date:	16 February 2018

Please cite this article as: M.A. Sprague, J.J. Stickel, H. Sitaraman, N. Crawford, Formulation and validation of a computational model for a dilute biomass slurry undergoing rotational mixing, *Chemical Engineering Science* (2018), doi: https://doi.org/10.1016/j.ces.2018.02.030

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Formulation and validation of a computational model for a dilute biomass slurry undergoing rotational mixing

Michael A. Sprague^{a,b,*}, Jonathan J. Stickel^c, Hariswaran Sitaraman^a Nathan Crawford^{c,1}

 ^aComputational Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
^bNational Wind Technology Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
^cNational Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA

Abstract

In this paper we develop a computational model for the mixing and transport of a dilute biomass slurry. The objective was to create a sufficiently simple and efficient model for biomass transport that can be coupled with reaction models for the study of conversion of cellulosic biomass into fermentable sugars. Our target system is 5%-by-mass α -cellulose, which is our proxy for more complex lignocellulosic biomass. In the authors' previous work, an experimental investigation with α -cellulose under two vane-mixer configurations showed a bifurcation between a settling regime, for which settling effects dominate, and a suspended regime, for which solids are mostly suspended. Here, a mixed-fluid model was chosen, for which the model for the mixture-velocity field is the incompressible Navier-Stokes equations under the Boussinesq approximation for buoyancy. Solids transport includes

Email addresses: Michael.A.Sprague@nrel.gov (Michael A. Sprague), Jonathan.Stickel@nrel.gov (Jonathan J. Stickel), Hariswaran.Sitaraman@nrel.gov

(Hariswaran Sitaraman), nathan.crawford@thermofisher.com (Nathan Crawford)

Preprint submitted to Chemical Engineering Science

^{*}Corresponding Author

¹Current address: Thermo Fisher Scientific, Madison, WI 53711

Download English Version:

https://daneshyari.com/en/article/6588571

Download Persian Version:

https://daneshyari.com/article/6588571

Daneshyari.com