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HIGHLIGHTS

« The model used here includes Monod kinetics and death rates for two competing species in a chemostat.
« The modelling combines asymptotic analysis, stochastic Langevin systems and Fokker-Planck results.

« The long-term behaviour in many circumstances is predicted to favour one particular species.

« The long-term predictions are different from previous classic predictions in the field.
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This paper formulates two 3D models using stochastic differential equations (SDEs) of two microbial pop-
ulations in a chemostat competing over a single substrate. These models have two distinct noise sources.
One is general noise whereas the other is dilution-rate-induced noise. Nonlinear Monod growth rates are
assumed and the paper is mainly focused on the parameter values where coexistence is found in the
deterministic model. Nondimensionalising the equations around the point of intersection of the two
growth rates identifies the dimensionless substrate feed as a large parameter. This in turn is used to per-

gg(é%évls c form an asymptotic analysis leading to a reduced 2D system of equations describing the dynamics of the
34E05 populations on and close to a line of steady states obtained previously from the deterministic stability

34F05 analysis. That reduced system allows the formulation of a spatially 2D Fokker-Planck equation which,

60H10 when solved numerically, admits results similar to those from the SDEs. Contrary to previous suggestions,

35Q84 one particular population becomes dominant at large times. Finally, we briefly explore the case where
death rates are included.
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1. Introduction the richness and complexity of the dynamics arising from even

simple systems of a few competing organisms. When exploring

1.1. Motivation

For decades the growth of bacterial/cell populations has been a
subject of great interest to modellers. The reason behind the pop-
ularity of these systems is of course the industrial and ecological
importance of competing population growth processes as well as
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these systems, coexistence of the different populations is of great
significance. One of the best known papers on analysis of coexis-
tence of competing populations is the paper by Stephanopoulos
et al. (1979) where they explored the dynamics of two microbial
populations competing for a single substrate. Before that paper it
was proven in Aris and Humphrey (1977) that if the substrate con-
centration is kept at the break-even point of the two populations
and the dilution rate constant at that value then both populations
can coexist. The result was also generalized and proven for multi-
ple competing populations in Hsu (1978) with the use of Lyapunov
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functions. However that situation presents a knife-edge event
where the extinction of one or of the other population occurs if
the dilution rate diverges from this exact value (El Hajji and
Rapaport, 2009). The main result by Stephanopoulos et al. was that
this extinction occurs due to the noise present in the control of the
dilution rate in every chemostat. The interesting conclusion was
that either population can become extinct depending on the value
of the dilution rate and the initial conditions.

A chemostat is an automated bioreactor in which spent medium
which contains metabolic products, microorganisms and left over
nutrients is continuously removed while fresh medium is added
at the same rate to keep the volume constant (Novick and Szilard,
1950). That rate is called the dilution rate and in the case where it
is smaller than the growth rate of the micro-organism that micro-
organism will grow. The chemostat provides a powerful means of
systematically investigating how growth rate impacts processes
of the cells such as gene expression and metabolism and the regu-
latory networks that control the rate of cell growth. Moreover, cells
grown in chemostat for generations can be used to study their
adaptive evolution in environmental conditions that limit cell
growth (Ziv et al.). One of the most important characteristics of
the chemostat for multiple microorganism populations competing
over a single substrate is the Competitive Exclusion Principle
(CEP). Per the CEP in the above scenario only one population will
survive. More specifically the one that has the lowest break-even
concentration will survive while the other will be led to extinction.
The break-even concentration is the concentration of the nutrient
such that the specific growth of a microorganism is equal to the
dilution rate. A great number of papers have focused on proving
the CEP for different growth function assumptions and removal
rates. Most of the papers use deterministic equations to describe
the evolution of populations in the chemostat while a few have
recently addressed what happens when stochasticity is taken into
account with either linear growth rates (Xu and Yuan, 2016) or with
only a single population (Ji and Yuan, 2014; Xu and Yuan, 2015).

1.2. Aim

The aim of this paper is to explore the idea of coexistence by
simulating the dynamics of the full equations for two microbial
populations and one substrate for non-linear Monod growth func-
tions with general noise as well as dilution rate induced noise as
explored in Stephanopoulos et al. (1979). The rest of the paper
begins with materials and methods, where we present the
stochastic version of the full model, for both cases, in the form of
a set of three stochastic differential equations (SDEs) of the Lange-
vin type. Beforehand an asymptotic analysis, which is performed
for the case where the substrate feed is large to aid our under-
standing of the system, shows an intricate structure within the
dynamics and provides a simplified two-dimensional version from
which we can derive and numerically solve the Fokker-Planck
equation readily. Finally we examine the case were death rates
are added to the model solely for the dilution rate noise case.
The next section after that is Results and discussion. Here, the
equations are numerically solved and simulated for the parameter
values of the same two microbial populations used in
Stephanopoulos et al. (1979). Following the results section, our
work and findings are summarized in Further discussion and
finally in the last section named Conclusion we raise possible
issues as well as possible extensions to our work.

2. Materials and methods

For two populations in a chemostat competing over a single
substrate the dimensionless equations are given by:
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Here f(z),g(z) represent the dimensionless growth rates given by
the following equations:
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A list of the parameters and their definitions is given in Table 1.

The non-dimensionalisation was performed around the break-
even concentration of the substrate assuming that there is such.
In the case of the parameter values used in Stephanopoulos et al.
(1979) which will also be used here, there is such a point. In the
dimensionless system the two growth rates break even when
z =1 in which case f(z),g(z) are also equal to one. In order to have
coexistence of the two populations the value of the dimensionless
dilution rate, 6, must be one. Then it can be shown using linear sta-
bility that there is a line of steady states given by y =z, —x — 1
(Stephanopoulos et al., 1979).

Egs. (1)-(3) were simplified in Stephanopoulos et al. (1979) and
the system reduced to one dimension before introducing the noise
term in the dilution rate. In our analysis, by contrast, the noise
term is introduced in the full equations without further simplifica-
tions, first, and computational studies are made; afterwards a self-
consistent asymptotic treatment is also applied to complement the
numerical approach and provide further comparisons.

2.1. Stochastic Langevin equations
It was been shown in Imhof and Walcher (2005) that in a che-

mostat system of the form (1)-(3) stochastic effects can be added
as follows:

dx = x(f(z) — O)dt + o1xdW, (1), (6)
dy = y(g(2) — Oo)dt + a2ydW,(t), (7)
dz = [0o(2r — 2) — Xf(2) — yg(2)]dt + 032dW5(t). (8)

Here W; are independent Wiener processes (Brownian motions).

In the case of stochasticity being solely due to random fluctua-
tion in the dilution rate the equations are different. Here, the dilu-
tion rate 6 fluctuates around a mean value and so:
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Here, {(7) is a Gaussian random noise. Substituting that back into
(1)-(3), a system of stochastic differential equations is found:

Table 1
Parameters and their values for E. coli and Spirillum sp. respectively.
Parameter Definition Value Reference
(dimensionless)
0 Dilution rate Varying -
z; Substrate feed 15,000 -
a; Maximum growth 2911, Stephanopoulos et al.
rate 1.636 (1979)
b; half-saturation 1.911, Stephanopoulos et al.
coefficient 0.636 (1979)
T Noise intensity Varying Our model
0o Dilution rate mean 1 -
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