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a b s t r a c t

Pressure corrections for the viscous potential flow analysis of Kelvin–Helmholtz instability at the inter-
face of two viscous fluids have been carried out when there is heat and mass transfer across the interface.
Both fluids are taken as incompressible and viscous with different kinematic viscosities. In viscous poten-
tial flow theory, viscosity enters through normal stress balance and effect of shearing stresses is com-
pletely neglected. We include the viscous pressure in the normal stress balance along with irrotational
pressure and it is assumed that this viscous pressure will resolve the discontinuity of the tangential stres-
ses at the interface for two fluids. It has been observed that heat and mass transfer has destabilizing effect
on the stability of the system. A comparison between viscous potential flow (VPF) solution and viscous
contribution to the pressure for potential flow (VCVPF) solution has been made and it is found that
the effect of irrotational shearing stresses stabilizes the system.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

When two superposed fluid layers of different physical param-
eters move parallel to each other with a relative horizontal veloc-
ity, the instability of the plane interface between the two fluids is
called Kelvin–Helmholtz instability [1,2]. The Kelvin–Helmholtz
instability occurs in various situations such as wind blowing over
the ocean, meteor entering the earth atmosphere and in oil explo-
ration industry etc.

When two fluids are divided by an interface, the interfacial
instability is usually discussed without considering heat and mass
transfer across the interface. On the other hand, the transfer of
mass and heat across the interface is very important in many situ-
ations such as boiling heat transfer in chemical engineering and in
geophysical problems. Hsieh [3,4] formulated the problem of
Rayleigh–Taylor instability and Kelvin–Helmholtz instability with
heat and mass transfer across the liquid vapour interface. Hsieh
[4] found that when the vapor layer is hotter than the liquid layer,
the effect of heat and mass transfer tends to inhibit the growth of
instability. Nayak and Chakrborty [5] established the formulation
of Kelvin–Helmholtz instability of the cylindrical interface be-
tween the liquid and vapor phases with heat and mass transfer.
Lee [6] has studied the Kelvin–Helmholtz instability of inviscid flu-
ids taking heat and mass transfer into the account and observed

that the heat and mass transfer has no effect on the linear inviscid
analysis while it plays an important role in the nonlinear analysis.

Viscous potential flow theory has played an important role in
studying various stability problems. Tangential stresses are not
considered in viscous potential theory and viscosity enters through
normal stress balance [7]. The no slip condition at the boundary is
not enforced in viscous potential theory. The viscous potential flow
analysis of Kelvin–Helmholtz instability has been studied by Funa-
da and Joseph [8]. They have observed that the stability criterion
for viscous potential flow is given by the critical value of relative
velocity. Funada and Joseph [9] studied the viscous potential flow
analysis of capillary instability and observed that viscous potential
flow is better approximation of the exact solution than the inviscid
model. Funada and Joseph [10] extended their work of capillary
instability for viscoelastic fluids of Maxwell type and observed that
the growth rates are larger for viscoelastic fluids than for the
equivalent Newtonian fluids.

In the viscous potential flow theory tangential stresses are not
considered and viscosity enters through normal stress balance.
Wang, Joseph and Funada [11] presented the idea that there exist
viscous pressure along with irrotational pressure in the normal
stress balance and it is assumed that this viscous pressure will re-
solve the discontinuity of tangential stresses for two fluids at the
interface. Wang, Joseph and Funada [12] carried out the viscous
contributions to the irrotational pressure for potential flow analy-
sis of capillary instability taking a viscous fluid and another fluid of
negligible viscosity to resolve the discontinuity of the tangential
velocity and shear stress at the interface. The effect of irrotational
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shearing stresses on the viscous potential flow analysis of Kelvin–
Helmholtz instability of two viscous fluids has been studied by
Awasthi et al. [13]. They have observed that the irrotational shear-
ing stresses stabilize the system.

The viscous potential flow analysis of Kelvin–Helmholtz insta-
bility with heat and mass transfer has been carried out by Asthana
and Agrawal [14]. They observed that the heat and mass transfer
has a stabilizing effect when the lower fluid viscosity is high and
destabilizing effect when fluid viscosity is low. Kim et al. [15]
investigated the capillary instability problem of vapour liquid sys-
tem in an annular configuration with heat and mass transfer using
viscous potential flow for axisymmetric disturbances. They ob-
served that for irrotational motion of two viscous fluids, heat and
mass transfer phenomenon completely stabilizes the interface
against capillary effects.

The objective of the present work is to include the effects of
shearing stresses in the viscous potential flow analysis of Kelvin–
Helmholtz instability when there is heat and mass transfer across
the interface. Both fluids are incompressible and viscous with dif-
ferent kinematic viscosities and having relative horizontal veloci-
ties. We have assumed that there exist viscous pressure in the
normal stress balance along with irrotational pressure and this vis-
cous pressure will resolve the discontinuity of tangential stresses,
which are not in continuation of the viscous flow theory. A disper-
sion relation has been obtained. The dispersion relation of Asthana
and Agrawal [14] has been reduced by our relation. Various graphs
have been drawn showing the effects of various physical parame-
ters such as vapor fraction, heat transfer coefficient etc. on the sta-
bility of the system.

2. Problem formulation

Consider a system of two incompressible and viscous fluid lay-
ers of finite thickness whose undisturbed interface is at y = 0 as
demonstrated in Fig. 1. In the equilibrium state, lower fluid of den-
sity q(1) and viscosity l(1) occupies the region�h1 < y < 0 and upper
fluid of density q(2) and viscosity l(2) occupies the region 0 < y < h2.
The lower and upper fluids have uniform flow (U1,0) and (U2,0)
respectively. The bounding surfaces y = �h1 and y = h2 are consid-
ered to be rigid. The temperatures at y = �h1, y = 0 and y = h2 are
T1, T0 and T2 respectively. In the basic state, thermodynamics equi-
librium is assumed and the interface temperature T0 is set equal to
the saturation temperature. In the disturbed state, the interface is
given by:

Fðx; y; tÞ ¼ y� gðx; tÞ ¼ 0 ð1Þ

where g is the perturbation from its equilibrium value. The unit
outward normal to the first order term is given by

n ¼ � @g
@x

ex þ ey

� �
ð2Þ

where ex and ey are unit vectors along x and y directions, respec-
tively. The velocity is expressed as the gradient of a potential func-
tion and the potential functions satisfy Laplace equation as a
consequence of the incompressibility constraint. That is,

r2/ðjÞ ¼ 0 ðj ¼ 1;2Þ ð3Þ

At the walls normal velocity vanishes, hence

@/ðjÞ

@y
¼ 0 at y ¼ ð�1Þjhj for ðj ¼ 1;2Þ ð4Þ

The interfacial condition, which expresses the conservation of mass,
can be written as

sq
@F
@t
þr/ � rF

� �
t ¼ 0 ð5Þ

where sxt = x(2) �x(1) represents the difference in a quantity across
the interface. Using Eqs. (1) and (5) we get

sq
@/
@y
� @g
@t
� @g
@x

@/
@x

� �
t ¼ 0 at y ¼ g ð6Þ

The interfacial condition for energy transfer can be expressed as

Lqð1Þ
@F
@t
þr/ð1Þ � rF

� �
¼ SðgÞ at y ¼ g ð7Þ

where L is the latent heat released during phase transformation.
S(g) constitute net heat flux from the interface.

In the equilibrium state, the heat fluxes in positive y-direction
in the fluid phases 1 and 2 are expressed as �K1(T1 � T0)/h1 and
K2(T0 � T2)/h2, respectively where K1 and K2 are heat conductivities
of the two fluids. Let us denote

SðyÞ ¼ K2ðT0 � T2Þ
h2 � y

� K1ðT1 � T0Þ
h1 þ y

ð8Þ

Expanded S(g) in a Taylor series about g = 0 as

SðgÞ ¼ Sð0Þ þ gS0ð0Þ þ 1
2
g2S00ð0Þ þ � � � ð9Þ

Then we take S(0) = 0, so that

G ¼ K2ðT0 � T2Þ
h2

¼ K1ðT1 � T0Þ
h1

ð10Þ

This indicates that in the equilibrium state the heat fluxes are equal
across the vapor–liquid interface.

Interfacial condition for the conservation of momentum is given
by,

qð1Þðr/ð1Þ �rFÞ @F
@t
þr/ð1Þ �rF

� �
¼qð2Þðr/ð2Þ �rFÞ @F

@t
þr/ð2Þ �rF

� �
þðp2�p1�2lð2Þn �r�r/ð2Þ �nþ2lð1Þn �r�r/ð1Þ �nþrr�nÞjrFj2 ð11Þ

where p represents the pressure, r denotes the surface tension coef-
ficient and n is the unit normal vector at the interface, respectively.
Surface tension has been assumed to be a constant, neglecting its
dependence on temperature.

3. Pressure correction for potential flow analysis

Wang et al. [11] derived a viscous correction for the irrotational
pressure at the free surfaces of steady flows, to resolve the discon-
tinuity between the non-zero shear stress and zero shear stress
condition at the free surfaces. We will derive the pressure correc-
tion for Kelvin–Helmholtz instability from the basic mechanical
energy equation.

Suppose that n1 = ey is the unit outward normal at the interface
for the inside fluid; n2 = �n1 is the unit outward normal for the
outside fluid; t = ex is the unit tangent vector. We use ‘‘i’’ forFig. 1. The equilibrium configuration of the fluid system.
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