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a b s t r a c t

An improved scaling analysis and direct numerical simulations are performed for the unsteady natural
convection boundary layer adjacent to a downward facing inclined plate with uniform heat flux. The
development of the thermal or viscous boundary layers may be classified into three distinct stages: a
start-up stage, a transitional stage and a steady stage, which can be clearly identified in the analytical
as well as the numerical results. Previous scaling shows that the existing scaling laws of the boundary
layer thickness, velocity and steady state time scale for the natural convection flow on a heated plate
of uniform heat flux provide a very poor prediction of the Prandtl number dependency of the flow. How-
ever, those scalings perform very well with Rayleigh number and aspect ratio dependency. In this study, a
modified Prandtl number scaling is developed using a triple-layer integral approach for Pr > 1. It is seen
that in comparison to the direct numerical simulations, the modified scaling performs considerably better
than the previous scaling.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The free convection heat transfer of the boundary layer adjacent
to a vertical or inclined flat plate is a common phenomenon in nat-
ure and in industry. The present study is of practical significance in
both fluid mechanics and heat transfer research communities. Nat-
ural convection heat transfer through an inclined surface is fre-
quently encountered in nature and in engineering devices such
as solar water heaters and attic roof spaces. In particular, an
increasing number of studies have focused on natural convection
adjacent to an inclined semi-infinite flat plate [1–5]. However,
most of the studies have been conducted by either numerical sim-
ulations or experimental observations. Few theoretical studies
have also been performed for this kind of problems.

Mathematical analysis, called scaling analysis, of the transient
behavior of the flow in the boundary layer has been considered
by many researchers recently. It is a cost-effective way that can
be applied for understanding the physical mechanism of the fluid
flow and heat transfer. The results of scaling analysis also play an
important role in guiding both further experimental and numerical
investigations. Patterson and Imberger [6] conducted the scaling
analysis on the transient behavior of the flow of a differentially
heated cavity. The authors classified the flow development through
several transient flow regimes into one of three steady-state types
of flow based on the relative values of the Rayleigh number Ra, the

Prandtl number Pr, and the aspect ratio A. Scaling has become pop-
ular since then. A considerable number of research have been con-
ducted for many aspects of unsteady natural convection boundary
layer flow under various flow configurations through scaling anal-
ysis, some of which have been verified through comparisons with
direct numerical simulations over a range of forcing parameters
[7–12].

Scaling analysis has also been performed for various thermal
forcing conditions, e.g. sudden and ramp temperature variations
[14–17], surface heating due to radiation [18], uniform surface heat
flux [19–22], etc. The scaling analysis of the boundary layer under
the inclined walls of an attic space for both heating and cooling roof
conditions has been performed recently (see [23–25]). However,
Poulikakos and Bejan [26] first conducted scaling analysis for this
geometry by considering the situation for a very small roof slope
with Prandtl number greater than unity. It is worth noting that ther-
mal and viscous boundary layers, whose thicknesses increase with
time to constant values at steady state, developed under both roof
planes. Saha et al. [24,25] and Saha [23,27] revisited the attic space
problem for both Pr ? 1 and several thermal forcing conditions for
a wide range of roof slope. The authors also developed the heat-
ing-up and cooling-down time scales for the entire enclosure and
the transient heat transfer scales as a form of Nusselt number. The
derived scales have been verified by the numerical simulations for
a range of aspect ratios, Prandtl numbers and Rayleigh numbers.

In most of the above studies, the existing scaling relations do
not provide good prediction of the Prandtl number dependency
of the flow for the velocity field. Recently, a modification of the
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scaling has been performed for both sudden [10,15,16,23] and
ramp heating [13,14,27] boundary conditions. The modified scaling
relations describing the Prandtl number dependency agree very
well with the direct numerical simulation results for a wide range
of Pr values following Pr > 1. However, modified scaling for the
heat flux case has not been performed for an inclined flat plate.
This is the motivation for the present study.

In this study, a three-region scaling analysis for the development
of the boundary layers adjacent to a downward facing inclined
heated flat plate is performed for uniform heat flux conditions. The
Prandtl number chosen in this study is greater than unity. Detailed
balances of the important terms of the Navier–Stokes and the energy
equations are examined. The scaling relations of the velocity, ther-
mal and viscous layer thicknesses in the different stages of the
boundary layer development are achieved, and the time scale of
the transition of the flow to a steady state is obtained, as is the time
scale. A number of numerical simulations are performed for differ-
ent flow parameters: Rayleigh number (Ra), Prandtl number (Pr)
and slope of the plate (A) in order to validate these scaling relations.
It is found that the numerical results agree well with the scaling re-
sults for all parameters considered in this study.

2. Problem formulation

Under consideration is the flow resulting from an initially
motionless and isothermal Newtonian fluid with Pr > 1 adjacent to
a downward facing inclined heated plate due to uniform heat flux.
The physical system shown in Fig. 1 consists of an inclined flat plate
of heated length L. We extend both ends of the plate by a distance
equal to its length at the right end and half the length at the left
end to form a rectangular domain, which is filled with an initially
stationary fluid at a temperature T0. If we consider the plate as the
hypotenuse of a right angled triangle then the height is h, the length
of the base is l and the angle that the plate makes with the base is /.
Except for the heated length L (shown in Fig. 1), all the boundaries of
the rectangular domain are assumed to be adiabatic, rigid and non-
slip. A uniform surface heat flux is applied to the plate.

The development of the flow under the inclined plate is gov-
erned by the following two-dimensional Navier–Stokes and energy
equations with the Boussinesq approximation:
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Initially the fluid is quiescent and isothermal. All boundaries are
assumed to be non-slip. Except for the plate, the adiabatic condi-
tion is also assumed for the temperature. On the plate the temper-
ature condition is defined as

Nomenclature

A slope of the plate
L length of the plate
l length of the horizontal projection of the plate
g acceleration due to gravity
h length of the vertical projection of the plate
P dimensional pressure
p dimensionless pressure
Pr Prandtl number
Ra Rayleigh number
t dimensional time
ts dimensional steady state time
T dimensional temperature of the fluid
Tw dimensional temperature scale on the plate
u, v dimensionless fluid velocities in the x- and y-direction

respectively
U0 reference velocity
U, V dimensional fluid velocities in the X- and Y-direction

respectively
Um dimensional maximum velocity
Ums dimensional velocity scale at steady state stage
um dimensionless maximum velocity
ums dimensionless velocity scale at steady state stage
x, y dimensionless Cartesian coordinates
X, Y dimensional Cartesian coordinates

Greek letters
b thermal expansion coefficient
DT temperature difference
dT � di dimensional viscous inner layer thickness
dTs � dis dimensional steady state viscous inner layer thickness
DT � Di dimensionless viscous inner layer thickness
DTs � Dis dimensionless steady state viscous inner layer thickness
dT dimensional thermal layer thickness
dTs dimensional steady state thermal layer thickness
DT dimensionless thermal layer thickness
DTs dimensionless steady state thermal layer thickness
dv dimensional viscous layer thickness
dvs dimensional steady state viscous layer thickness
Dv dimensionless viscous layer thickness
Dvs dimensionless steady state viscous layer thickness
Cw heat flux
j thermal diffusivity
q density of the fluid
m kinematic viscosity
h dimensionless temperature
hw dimensionless temperature scale on the plate
/ angle
s dimensionless time
ss dimensionless steady state time

Fig. 1. Schematic of the computational domain and boundary conditions.
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