ELSEVIER

Contents lists available at ScienceDirect

Chemical Engineering Science

journal homepage: www.elsevier.com/locate/ces

Implementation of an improved bubble breakup model for TFM-PBM simulations of gas-liquid flows in bubble columns

Xiaofeng Guo, Qiang Zhou, Jun Li, Caixia Chen*

Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China

HIGHLIGHTS

- An improved bubble breakup model was implemented in a gas-liquid TFM-PBM model.
- The log-normal bubble size distributions were validated against literature data.
- A generic TFM-PBM model for the simulations of bubble columns was established.
- The simulation results of D=0.44 m bubble column of Chen et al. (1998) were improved.

ARTICLE INFO

Article history: Received 12 January 2016 Received in revised form 19 May 2016 Accepted 13 June 2016 Available online 15 June 2016

Keywords:
Bubble coalescence and breakup
Bubble size distribution
TFM-PBM model
Bubbly and churn-turbulent bubble

ABSTRACT

An improved bubble coalescence and breakup model was implemented in the inhomogeneous TFM-PBM model for buoyancy-driven gas-liquid bubbly flows. The bubble coalescence was modeled by considering bubble collisions induced by turbulent fluctuations, buoyancy driven, wake entrainment, and viscous shear, and the liquid film drainage model was used for the description of the coalescence efficiency of collisions. The bubble breakup was analyzed in terms of bubble interactions with turbulent eddies which coupled the restriction of surface energy with the capillary pressure. A generic TFM-PBM model was developed and applied for the simulations of bubble columns operated in different flow regimes. The evolutions of the bubble size distributions were simulated and validated for literature data of a D=0.14 m cylindrical bubble column at gas superficial velocities 0.03 and 0.45 m/s, respectively. Furthermore, a well documented D=0.44 m bubble column was simulated, and the predicted distributions of the gas holdup and liquid velocity were compared with the experimental measurements of Chen et al. (1998). The model showed the capacity of describing the gas-liquid fluid dynamics of bubble columns operated in both bubbly and churn-turbulent flow regimes.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Computational fluid dynamics (CFD) has become an important approach for analyzing the hydrodynamics of buoyancy-driven gasliquid flows, and the Two-Fluid Model (TFM) has been frequently employed in the simulations of the bubble columns (Sanyal et al., 1999; Wang et al., 2003; Chen and Fan, 2004; Chen et al., 2005; Cheung et al., 2007; Tabib et al., 2008; and Xu et al., 2014; among others). However, a generic TFM model for the gas–liquid bubble columns operated in different flow regimes has not been well established due to the lack of reasonable closure models that describe the gas–liquid interface transport phenomena. The interface interactions are mainly induced through the drag force that liquid exerts

on the bubble surface due to viscosity, the lift force caused by the shear flows around the bubbles, and the turbulent dispersion force due to the collisions of liquid eddies. Therefore, the interface closure model relies on (1) the theoretical formulation of each interaction force, (2) the model of the bubble induced turbulence of the liquid phase, (3) the descriptions of bubble sizes, which are considered to be closely connected to the models of the interaction forces and the turbulence (Xu et al., 2013).

In most early TFM simulations of dispersed gas-liquid flow, the spatial time-variation of the bubble sizes were not considered and a constant bubble size was used instead (Sanyal et al., 1999; Oey et al., 2003; Zhang et al., 2005; Tabib et al., 2008; and Rzehak and Krepper, 2013; among others). The simplification of the bubble size model limits the TFM simulations to a bubbly flow regime, because the bubble size distribution in such a condition is narrow and the interaction between bubbles is relatively weak. However, for a bubble column operated in a churn-turbulent regime, the

^{*} Corresponding author.

E-mail address: cxchen@ecust.edu.cn (C. Chen).

```
Nomenclature
                                                                                                    time, s
                                                                                        t
                                                                                        t_{contact}, t_{drainage} contact/drainage time between bubbles. s
Roman letters
                                                                                                    velocity vector, m s<sup>-1</sup>
                                                                                        11
                                                                                                    drift velocity vector, m s<sup>-1</sup>
                                                                                        \mathbf{u}_{dr}
            bubble cross-sectional area, m<sup>2</sup>
Α
                                                                                                    bubble rise velocity, m s<sup>-1</sup>
                                                                                        u_b
A_{ii}
            bubble impact area, m<sup>2</sup>
                                                                                                    turbulent velocity, m s<sup>-1</sup>
                                                                                        u_t
b(v_i: v_j) breakup frequency, s<sup>-1</sup>
                                                                                                    liquid velocity gradient, m s<sup>-1</sup>
                                                                                        u_{\nu}
            production of bubble by breakup, kg^{-1} m^{-3} s^{-1}
B_R
                                                                                                    wake entrainment velocity, m s^{-1}
                                                                                        u_w
            destruction of bubble by breakup, kg^{-1} m^{-3} s^{-1}
B_D
                                                                                                    eddies turbulent velocity, m s<sup>-1</sup>
                                                                                        ūί
            surface area increase coefficient
C_f
                                                                                        Ug
                                                                                                    superficial gas velocity, m s<sup>-1</sup>
c(v_i, v_i) coalescence rate, m<sup>-3</sup> s<sup>-1</sup>
                                                                                        u, v, w
                                                                                                    velocity component, m s<sup>-1</sup>
C_{1\varepsilon}, C_{2\varepsilon}, C_{3\varepsilon}, C_{u} constants, 1.42, 1.68, 1.3, 0.0845
                                                                                                    bubble volume, m<sup>3</sup>
                                                                                        ν
            production of bubble by coalescence, kg^{-1}\,m^{-3}\,s^{-1}
C_B
                                                                                                    collision frequency, m^{-3} s^{-1}
                                                                                        w
            destruction of bubble by coalescence, kg^{-1} m^{-3} s^{-1}
C_D
                                                                                        x, y, z
                                                                                                    spatial coordinates, m
            drag coefficient
C_d
            lift coefficient
C_{lift}
                                                                                        Greek letters
            bubble diameter, m
d
            Sauter mean bubble diameter, m
d_b
                                                                                        \alpha
                                                                                                    void fraction
            bubble column diameter, m
D
                                                                                                    turbulent dissipation rate, m<sup>2</sup> s<sup>-3</sup>
                                                                                        \epsilon
            Eötvös number
Eo
                                                                                                    shear strain rate, s<sup>-1</sup>
                                                                                        γ
            bubble breakup volume fraction
f_{bv}
                                                                                                    eddy size, m
                                                                                        λ
\mathbf{F}_{gl}, \mathbf{F}_{lg}
            interfacial momentum exchange term, kg m<sup>-2</sup> s<sup>-2</sup>
                                                                                                    dynamic viscosity, kg m<sup>-1</sup> s<sup>-1</sup>
                                                                                        μ
            acceleration due to gravity, 9.81 m s<sup>-2</sup>
g
                                                                                                    ≈3.1415926
                                                                                        \pi
            production of turbulent energy, kg m<sup>-1</sup> s<sup>-3</sup>
G_{k,l}
                                                                                                    density, kg m<sup>-3</sup>
                                                                                        ρ
            liquid film thickness, m
h_0, h_f
                                                                                                    surface tension, kg m<sup>-2</sup>
                                                                                        \sigma
Н
            liquid height, m
                                                                                                    dispersion Prandal number, 0.75, 0.75
                                                                                        \sigma_k, \sigma_{\varepsilon}
            turbulent kinetic energy, m<sup>2</sup> s<sup>-2</sup>
k
                                                                                                    stress, kg m<sup>-3</sup>
                                                                                        τ
            covariance of the velocities of liquid and bubble,
k_{gl}
                                                                                                    eddy size divided by parent bubble size
                                                                                        ξ
            m^2\,s^{-2}
                                                                                                    bubble-induced turbulence term. m<sup>2</sup> s<sup>-3</sup>
                                                                                        \Pi_{k,l}
K_{gl}, K_{lg}
            inter-phase
                               momentum
                                                   exchange
                                                                    coefficient,
                                                                                                    bubble-induced turbulence term, m<sup>2</sup> s<sup>-4</sup>
                                                                                        \Pi_{\varepsilon,l}
            kg m^{-3} s^{-1}
                                                                                                    coefficient for wake entraining
            number of bubbles per unit volume, m^{-3}
n
'n
            number of eddies per unit volume, m<sup>-4</sup>
                                                                                        Subscripts
Ν
            number of bubble bins
p_c(d_i, d_i) coalescence efficiency
                                                                                        b
                                                                                                    bubble index
p_h(d_i: d_{i,k}) breakup efficiency
                                                                                                    gas index
            bubble size distribution, m<sup>-1</sup>
                                                                                        g
pdf
                                                                                                    liquid index
            equivalent radius, m<sup>-1</sup>
r_{ij}
                                                                                                    phase index, number index
            Reynolds number
                                                                                        i, j
Re
            Source term of i-th bubble group, m^{-3} s^{-1}
Si
```

flow structure becomes very complex. The bubble coalescence and breakup results in a wide distribution of bubble sizes which is greatly different from the assumption of a constant bubble size.

The dynamic variation of the bubble sizes and their distributions in buoyancy driven gas-liquid flows have been modeled using the population balance model (PBM). With PBM, the bubbles are represented by a number of size bins, and usually, can be classified into two discrete size groups: a small size group (with bubbles smaller than 5.8 mm) and a large size group (with bubbles larger than 5.8 mm) according to the sign change of lift force (Tomiyama et al., 2002; Lucas et al., 2003; and Krepper et al., 2008). The mass and momentum transfer between the two discrete phases is accounted for by the computations of the birth and death rates due to the coalescence and breakup of bubbles. In the past decades, substantial efforts have been made to develop a bubble coalescence and breakup models (Prince and Blanch, 1990; Luo and Svendsen,1996; Martinez-Bazan et al., 1999; Lehr and Mewes, 2001; Wang et al., 2003; Zhao and Ge, 2007; Liao and Lucas, 2009, 2010; Solsvik and Jakobsen, 2015; among others), while a generic bubble coalescence and breakup model has not yet been established in combination with the TFM-PBM simulations due to the complexity of the transport phenomena resulting from bubble coalescence and breakup.

For the bubble coalescence process, several criteria have been proposed, and the film drainage model of Shinnar and Church (1960) was widely acknowledged among others. According to the film drainage model, a liquid film is firstly formed when two bubbles come close due to an overpressure; the liquid film begins to drain sequentially, and finally results in film rupture and bubble coalescence. While, if the pressure force is insufficient to overcome the viscosity force of the thin film, the bubbles bounce back without coalescence. The coalescence probability depends on the intrinsic contact time and drainage time between the bubbles. Howarth et al. (1964) suggested that the attraction force between two colliding interfaces was too weak in comparison with the turbulent force to control the coalescence probability, and concluded that whether coalescence will occur or not depended on the impact of colliding fluid particles. Note that during energetic collisions, when the approach velocity of two colliding bubbles exceeds a critical value, the dominant mechanism is an immediate coalescence without liquid film capturing and thinning. Lehr et al. (2002) introduced an empirical model using a critical approach velocity based on the experimental observation. In all mechanisms mentioned above, contact and collision is the premise of coalescence. The collision between bubbles is usually caused by their relative velocity, and the relative motion may occur due to a

Download English Version:

https://daneshyari.com/en/article/6589071

Download Persian Version:

https://daneshyari.com/article/6589071

<u>Daneshyari.com</u>