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H I G H L I G H T S

� Kinetics of microbial growth imple-
mented in CFD model.

� Lagrangian particle tracking used to
quantify impact of reactor design.

� A range of metrics were used to
quantify impact of bioreactor design
on performance.

� Impact of substrate addition point on
yield examined.

� Approach developed can be used for
design and optimisation of bioreactors.
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a b s t r a c t

In this work we have coupled microbial kinetics with a Computational Fluid Dynamics (CFD) model of
the hydrodynamics within a bubble column. Saccharomyces cerevisiae was used as a model organism due
to its well characterized kinetics. A range of methodologies was used to quantify the impact of reactor
design on performance. These methodologies included those based on the average substrate con-
centration, those based on the instantaneous substrate concentration, as well as those based on
Lagrangian particle tracking. By using the particle tracking approach it was possible to quantify the
duration of any oscillations in substrate concentration that the cells experience, a question of key phy-
siological relevance. It was found that the relative yield as calculated using both approaches depended on
the sugar addition location. Values of the relative yield between 75% and 93% were calculated based on
the average concentration approach, 73–81% based on the instantaneous concentration approach; while
values of 93–97% were calculated using particle tracking. Overall, the results from this work clearly
demonstrate the potential of using CFD to characterize the complex and highly dynamic behaviour
occurring in bubble column bioreactors.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Bubble columns are gas-liquid contactors which are widely
used in the bio-processing industry to produce a range of products
(Kantarci et al., 2005). A key consideration in any industrial bio-
process is maximising the yield (typically defined as the mass of
product produced per mass of substrate added). It has been

observed that as a process is scaled-up the yield decreases; the
magnitude of this reduction has been reported to be 6–7% for the
production of baker's yeast (Saccharomyces cerevisiae) (George
et al., 1998) and approximately 20% for the production of recom-
binant protein using Escherichia coli (Enfors et al., 2001).

This difference in yield has been attributed to substrate gra-
dients which are caused by poor mixing. Such gradients can lead to
the cells being exposed to high substrate concentrations which can
trigger overflow metabolism in many industrially relevant micro-
organisms. For example, in the case of S. cerevisiae production,
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exposure to high sugar concentrations leads to the production of
ethanol (the Crabtree effect), which in turn leads to a reduction in
yield (George et al., 1998). Similar behaviour occurs with E. coliwith
acetate being the typical product of overflow metabolism (Xu et al.,
1999). As noted elsewhere (Kavanagh and Barton, 2008), acetate
can inhibit the production of recombinant protein; hence, it is
desirable to avoid conditions which lead to acetate production.

Exposure to zones where the substrate concentration is very
low may lead to starvation, which also negatively affects the yield.
Additionally, it has been shown (Hewitt and Nienow, 2007) that
exposure to fluctuating environmental conditions can induce the
stress response in E. coli, which again results in a reduction in
the yield.

A number of authors (Bylund et al., 1999; Sweere et al., 1988;
Xu et al., 1999) have examined the impact of exposing cells to
fluctuating conditions; work that has been reviewed by Lara et al.
(2006) and Neubauer and Junne (2010). Such approaches provide
insight into the problems associated with substrate gradients;
however, they offer little insight as to how the design or operation
of large-scale reactors can be improved so as to minimise
yield loss.

In order to begin to address this industrially important issue,
several authors (Morchain et al., 2014; Vetter, 2009; Vrábel et al.,
2001) have examined coupling a Computational Fluid Dynamics
(CFD) model with relevant microbial kinetics, with the aim of
developing a meaningful model of bioprocesses.

A key difficulty in any bioprocess modelling is the need to
account for a wide range of time-scales. For example a typical fed-
batch fermentation for the production of S. cerevisiae is of the
order 12–18 h (Vetter, 2009); while the maximum specific growth
rate of yeast is around 0.5–0.6 h�1 (Blanch and Clark, 1997)
(meaning that the cell concentration will double approximately
every 70 min). Scale-down studies performed at the laboratory
scale have shown that exposing yeast to fluctuating environmental
conditions with circulation times of the order 30–60 s is sufficient
to cause an increase in by-product formation, as well as a drop in
biomass (Lara et al., 2006). In comparison, characteristic relaxation
times for bubbles in two-phase flow are of the order 1�10�3 s
(Braun, 2012). Simulating behaviour across such a range of time-
scales (seven orders of magnitude) represents a significant
challenge.

One possible method of addressing this issue has been used by
Vetter (2009) where a CFD model is coupled with a separate
model of biological growth. In this ‘sequential co-simulation’
approach, the flow-patterns predicted by the CFD model are used
to calculate the local concentrations of all relevant species (e.g.
oxygen, glucose, ethanol, etc.). This information is then used by
the biological model to calculate the rates of growth and con-
sumption, with the resultant information being returned to the
CFD model. A major advantage of this approach is that it is possible
to simulate the entirety of a fed-batch fermentation, something
which is too computationally demanding if the growth kinetics are
incorporated directly into the CFD model. The reason for this is
that relatively small (of the order 1�10�3 s) time-steps are nee-
ded to simulate the fluid flow, while typical fermentations can be
12–18 h in duration. Vetter (2009) divided an 18 h fermentation
into four increments, obtaining excellent agreement with his
experimental results. It was also noted that computational effi-
ciency was a key consideration in the simulation of industrial
systems; such a conclusion having also been reached by others
(Noorman, 2011).

An alternative approach has been used by Morchain et al.
(2014) to model growth in a stirred-tank bioreactor. In their work,
they have introduced a population balance model for the biomass
to account for the different concentrations experienced by the
cells. In this approach, the local specific growth rate is decoupled

from the population specific growth rate, meaning that the impact
of poor substrate distribution can be accounted for in the model.
By calculating the difference between local and global specific
growth rates, it is possible to identify zones where the cells are
exposed to excess or insufficient substrate concentrations.

In their work Lapin et al. (2006) developed an Euler–Lagrange
model of E. coli growth in a stirred tank where the movement of
cells throughout the reactor is tracked. The key advantage of this
approach is that it is possible to quantify the degree to which the
cells are exposed to fluctuating environmental conditions, such
knowledge being very useful in quantifying the effect of reactor
design on performance (i.e. yield).

A range of methodologies exist by which the performance of a
bioreactor can be quantified. Hence, the key aim of the present
work is to build upon these existing approaches and examine their
potential as tools for quantifying the impact of reactor design on
performance. We will focus on examining a S. cerevisiae fermen-
tation; for the reason that it is a commonly used microorganism
with well characterized genetics and kinetics.

2. Model set-up

2.1. CFD set-up

Here we have extended an existing CFD model of bubble col-
umn hydrodynamics that has been validated against a compre-
hensive experimental data set including measurements of local
hold-up profiles, profiles of the gas and liquid velocity, bubble size
distribution and mixing time (as a function of tracer addition and
measurement location) (McClure et al., 2014b, 2014c, 2015a).

The system modelled was a pilot-scale bubble column 0.39 m
in diameter and 2 m in height as shown schematically in Fig. 1. Air
was introduced through a ‘tree’ type sparger, the centerline of
which is located at a height (z) of 0.135 m, at a superficial velocity
of 0.16 m s�1.

In order to quantify the impact of reactor design, substrate was
introduced in three different ways. The first substrate addition
location (injection point 1) was located at the column centerline at
a height (z) of 1.5 m; this position being chosen as substrate
addition at the free surface is commonly employed. Injection point
2 was positioned at the column centerline, 0.05 m above the base
of the column (i.e. below the sparger), with this position being
selected on the basis that this is the most poorly mixed region of
the column (McClure et al., 2015a). Addition below the sparger is
unlikely to be used in any practical set-up, however, this location
was chosen as it was felt that it would provide an interesting point
of comparison with the more commonly used approach (i.e. add-
ing substrate at the free surface). Finally, sugar was introduced as a
volume source uniformly throughout the column, such an
approach corresponding to perfect mixing whereby the substrate
introduced is instantaneously and uniformly dispersed throughout
the column. In all cases, the sugar was introduced at the same rate
(SFeed¼1.1�10�3 kg s�1). Concentrations (i.e. of sugar, cells, etc.)
are calculated on the basis of the liquid-phase volume (and not the
two-phase volume) as is physically correct. The three sugar tracers
have been introduced as separate scalars, with the kinetics of
uptake being calculated for each individual scalar. All of the scalars
share the same flow field; hence any predicted differences in sugar
concentration and product yield are only a function of the
addition point.

The approach used to solve the fluid-flow inside the reactor
will be described here briefly; a more detailed description
(including the relevant equations) has been presented in Appendix
A. Here, we have used the Euler–Euler approach to model the two-
phase flow; with ANSYS CFX 15.0 being used to solve the
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