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a b s t r a c t

Different approximations for two-point third moments of velocity field appearing in the Karman–Howart
equation are compared. For this purpose, the known experimental results of Townsend and Stewart and
the model form of turbulence energy spectrum, which enables approximating the experimentally deter-
mined second moments of velocity field, are used. The latter are applied for evaluation of the two-point
third moments by the procedures proposed by various authors. Calculation results are compared to
experimental data, which allows obtaining quantitative assessments of approximation accuracy. For a
number of models, the second-order structural function is found from the Kolmogorov equation for iner-
tial subrange. Thus, in the Hasselman and Lytkin models for the structural function DLL the power law
expected in the inertial subrange DLL(r) � r2/3 is obtained.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the case of turbulent non-premixed combustion, the chemi-
cal reaction proceeds basically in zones where flows appear well
premixed, and the required components meet randomly in neces-
sary ratios. Therefore, for flows with comparable reference time
scales of chemical reaction and of turbulent micromixing the
strong spatial heterogeneity of reaction layers is peculiar. At the
same time, the majority of the theoretical models of micromixing
is one-point and, by virtue, cannot consistently take into account
the structure of turbulent fields.

The modern statistical models of turbulent combustion – flamelet,
conditional moment closure, transfer of a joint probability density
function (PDF) of scalars – take into consideration the heterogeneity
with the use of some a priori assigned characteristics of the turbulent
flow spatial structure such as a conditional rate of scalar dissipation,
a conditional rate of diffusive transfer, reference scales of length and
time of a scalar field and so on. The necessity to improve these char-
acteristics is admitted by many contributors. Actually, the refine-
ment of the above-mentioned models of turbulent combustion
depends on the accumulation of knowledge of these characteristics.
For this purpose, experiments and DNS are carried out, and addi-
tional models with regard to the turbulence spatial structure are
developed as well.

Such additional models can be formulated for correlation or
structural functions of velocity and scalar fields [1–7], for two-point

PDFs, and also for a joint PDF of scalars and their gradients, or sca-
lars and scalar dissipation.

The experimental study of turbulence spatial structure is fol-
lowed in measurement of spectra and correlation functions. In
most cases, primary data of experiments represent two-point or
two-time correlations or structural functions. It is therefore of
importance to develop theoretical models for correlation functions
of velocity and scalar fields that are adequate to experiment and
DNS.

As contrast to the probability density function (PDF), the corre-
lation function is a more convenient mathematical object as being
smooth function with a regular behavior. However, as well as in
the case of the PDF usage, the amount of independent variables in-
creases, thus essentially complicating the solution process. Only in
the most elementary cases, such as a flat mixing layer or a spher-
ically symmetric cloud, it is possible considering one space vari-
able. The total number of variables in these cases corresponds to
3D geometry.

One more difficulty is that the equations for the CF are unclosed
as they contain the two-point third moments of velocity field which
cannot be immediately expressed through the CF. Different closure
methods for these equations are known [8,9], and there appears a
problem of choosing the most justified model corresponding to
physical representations and not introducing too considerable
numerical difficulties.

Our task is the examination of the methods grounded on differ-
ent assumptions permitting to express the third moments, appear-
ing in the equation for CF, through a required correlation function.
As a major similarity exists in the description of correlation
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functions for the velocity and scalar fields, the model [6] designed
for closure of the Corrsin equation is also included in this list.

The experimentally obtained distributions of the third moments
[10] are used for estimation of the accuracy of different approxima-
tions. As the measure of agreement, the individual variation dM

was selected, where dM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
ðBLL;LðriÞ�BM

LL;LðriÞÞ2

N

q
. Here N is the number

of points ri, at which the value of the two-point third moment BLL,L

is determined from experiment, BM
LL;L is the model expression for

BLL,Ldefined by a particular closure model.
The testing of a large group of the models [6,2–5,7] has shown a

close enough agreement of the results of the models. This has not
allowed us to make a definite choice for the benefit of any one. An-
other way of the choice consists in inspecting calculation based on
different approaches with known regularities, for example, with
the law of ‘‘two thirds’’ for the second order structural function
of velocity in the inertial range. This law being the consequence
of Kolmogorov’s second similarity hypothesis proves to be true in
numerous experimental data obtained in the conditions close to
those of stationary isotropic turbulence at large Reynolds numbers
[11]. In these conditions, the equation containing the two-point
longitudinal structural functions of second and third order (Kol-
mogorov’s equation) [12] is fulfilled. Considering this equation
with zero initial condition at r = 0, the Cauchy problem is obtained,
whose analytical solution is possible only for some of the men-
tioned above models [2,4,5]. For models [2,4] the solutions of Kol-
mogorov’s equation correspond to ‘‘ two thirds’’ power law.

2. Approximation of correlation function

In most cases, the turbulence parameters necessary for approx-
imation of the third moments can be obtained if the one-time two-
point CF is known. From the methods considered below, only the
approach based on the approximation of direct interaction, see
[6], needs a two-time structural function.

In the present paper, for determination of the one-time longitu-
dinal CF of velocity field the turbulence energy spectral distribu-
tion assigned parametrically in the form of several known
regularities for different spectral subranges is used. Namely, the
following subranges are considered: large scale subrange (small
wave numbers), main subrange with a wide scope of wave num-
bers, where in some cases the law of ‘‘5/3’’ is observed, and dissi-
pation subrange. The required CF is determined by the relevant
integral transformation applied to the spectrum (1). The positive
definiteness of a spectrum ensures a statistical reliability of the
CF, and the spectrum parameters are adjusted to obtaining the cor-
respondence of the calculated and measured CFs. The measure-
ment data [10] were used for the two-point velocity field
correlation functions of second and third order at different dis-
tances behind a turbulizing grid.

2.1. Parametric representation of spectrum

Parametric representation of a turbulence energy spectrum was
set as the sequence of subranges with known regularities, with
continuity matching. In so doing, two forms of the spectrum were
used.

The first one contained only three reference subranges of wave
numbers: large-scale (E(k) � k4), main (E(k) � kp) and dissipation
(E(k) � exp(�g2k2)). This spectral representation has five unknown
parameters: spectrum amplitude, reference scale of wave num-
bers, wave numbers of change from the large-scale subrange to
the main one (kemax) and from the main to the dissipation subrange
(kdiss), and also the exponent p in the power spectral law for the
main interval. As a result of adjusting these parameters, the expo-

nent value at the main subrange appears to be close to �5/3, which
allows us to identify this subrange to the inertial one.

Additionally, the second form of the spectrum included a
smooth transition from the large-scale to the main subrange,
and, accordingly, one more additional parameter: reference initial
wave number of a transitional subrange.

A priori unknowns parameters were taken from a requirement
of a maximum accuracy for approximation of the CF that was esti-
mated by the individual variation dB, defined by the relation

dB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
ðBðriÞ�BEðriÞÞ2

N

q
. Here N is the number of points ri at which

the values BE(ri) are measured, and B(ri) is defined by relation (1):

BLLðrÞ ¼ 2
Z 1

0

sinðkrÞ
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cosðkrÞ
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� 2
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 !
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The spectrum parameters were adjusted by a sequential modifica-
tion up to the moment of achieving a local extremum with the
use of the so-called ‘‘ravine’’ method. Thus, the values of the spec-
trum amplitude and the wave number reference scale were deter-
mined from the normalization requirements of turbulence energy
and dissipation rate:Z 1

0
EðkÞdk ¼ 3=2;

Z 1

0
k2EðkÞdk ¼ 5:

In selected dimensionless variables, the Taylor microscale k is cho-
sen as a reference spatial scale, and the intensity of the longitudinal
component of the fluctuational velocity hu02i is equal to unity.

The obtained thus value of kdiss, identified with the reciprocal of
the Kolmogorov scale g, enables calculating the characteristic Rey-
nolds number

Re ¼ k2ffiffiffiffiffiffi
15
p

g2
: ð2Þ

A similar way of the CF parametric representation was used in [13]
for calculation of statistical distributions of a turbulent field in the
homogeneous flow behind a turbulizing grid. A difference consists
only in the amount of subranges, over which different expressions
for a spectral density are set, and in the way of the best selection
of parameters. In [13] the dissipation subrange is absent, and the
parameters are adjusted to the intensity of turbulence and the inte-
gral scale.

Fig. 1 shows a typical correspondence of the calculation results
and experimental data for the CF. Here, the curve (1 � r/k)2,
approximating the CF at small argument values is also plotted.
Fig. 2 represents the comparison of the experimentally determined
one-dimensional spectrum with the spectrum F1(k1),found from
the model energy distribution

F1ðk1Þ ¼
Z 1

k1

EðkÞ
k

1� k2
1

k2

 !
dk: ð3Þ

Similar results of the CF approximation (see Fig. 3) are gained with
the usage of the spectra containing a transitional sunrange between
initial and main ones (see Fig. 4). In this case, a little bit worse val-
ues of individual variations are observed. Table 1 presents the
parameters of spectra providing an optimal approximation of the
CF at different distances from the turbulizing grid. Note that the
variation of some parameters occurs almost at a time with that of
the distance to the grid. The variables calculated from experiment
[10] are located below the double line in Table 1. Except for the first
position (x/M = 20), the agreement of the Reynolds numbers ob-
tained when adjusting the best value for the Kolmogorov scale
and determined from experimental data can be considered
acceptable.
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