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H I G H L I G H T S

� Global stability and passivity are studied for a class of thermodynamical processes.
� Processes may be composed of several spatially homogeneous subsystems.
� Chemical reactions and mass and heat transfer flows among subsystem are considered.
� The overall system may interact with surroundings through convective flows.
� Internal entropy production as Lyapunov/storage function for isolated/open processes.

a r t i c l e i n f o

Article history:
Received 28 January 2015
Received in revised form
23 June 2015
Accepted 30 July 2015
Available online 24 August 2015

Keywords:
Stability
Passivity
Thermodynamics
Internal entropy production
Port-controlled Hamiltonian systems

a b s t r a c t

In this contribution, stability and passivity properties of a class of thermodynamic processes are
addressed from a thermodynamical point of view. These thermodynamic processes can be constituted by
multiple spatially homogeneous dynamic subsystems modeled by ordinary differential equations. It is
shown that the internal entropy production may be used as a Lyapunov function candidate to prove the
isolated system stability properties and as a storage function to assess the passivity properties when the
system interacts with the surroundings. In addition, it is shown that the stability condition depends on a
matrix whose dimension is equal to the number of modeled dynamical phenomena taking place within
the system, i.e. the number of phenomena can be smaller than the system dimension. Moreover, a port-
controlled Hamiltonian representation of this class of systems based on the internal entropy production
is developed. Finally, the theory proposed is applied to three study cases: a heat exchanger, a ideal gas
adiabatic chemical reactor and a ideal gas jacketed chemical reactor.

& 2015 Published by Elsevier Ltd.

1. Introduction

Dissipative structures are a concept which has been used in
physics to discuss the formation of structures organized in space
and/or time at the expense of the energy flowing into the system
from the outside (Willems, 1972a,b). In fact, by invoking the uni-
versal principle of energy conservation, it may be argued that all
physical systems are dissipative with respect to some suitable
variables that couple the system to the environment (Garcia-
Canseco et al., 2010). The space–time structural organization of
biological systems starting from the subcellular level up to the

level of ecological systems, coherent structures of laser and plasma
physics, problems of elastic stability in mechanics, instability of
hydrodynamics leading to the development of turbulence, beha-
vior of electrical networks and chemical reactors form a short list
of problems treated in this framework (Kubicek and Marek, 1983).

In principle, dissipative structures are maintained at the
expense of energy flowing from the outside and hence, one should
deal with systems that are generally far from equilibrium with the
inherent stability problems that have been addressed by a number
of approaches from local stability analysis to system theory. In
recent years the stability of dissipative systems has been addres-
sed by combining irreversible thermodynamics and systems the-
ory. For instance, Dammers and Tels (1974), based on the Brussels
school of thermodynamics (Glansdorff and Prigogine, 1971), pro-
posed a suitable potential function related to Prigogine's velocity
potential to state a stability criterion in adiabatic stirred flow
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reactors. Tarbell (1977) has proposed a Lyapunov function for
continuous stirred tank reactor (CSTR) with a steady state near the
equilibrium point, that resembled the thermodynamical entropy
production function, while Georgakis (1986) suggested the use of
extensive rather than intensive variables for process control pur-
poses. More recently, Alonso, Ydstie and coworkers have explored
this research area, that resulted in very insightful works on the
control design of process systems (see e.g. Alonso and Ydstie, 1996,
2001; Alonso et al., 2002; Balaji et al., 2010; Coffey et al., 2000;
Ydstie, 2002; Ydstie and Alonso, 1997) to develop stabilizing mass
and energy inventory controllers (Farschman et al., 1998) and to
derive general structural stability conditions for chemical process
networks (Antelo et al., 2007; Baldea et al., 2013; Hangos et al.,
1999; Hioe et al., 2013), where, in addition to the concept of
inventories, nonlinear extensions of the curvature of the entropy
function called availability have been used as it has been proposed
within the framework of passivity theory for processes (Ydstie and
Alonso, 1997), while in Hangos et al. (2001, 2004), passivity and
feedback passivation of chemical processes were considered from
a Hamiltonian point of view. In the particular case of reacting
systems, continuous stirred tank reactors (CSTRs) have been the
subject of a large number of stability and advanced control studies
that can be taken into account by system theory: these systems are
usually nonlinear and may exhibit multiple steady states and
complex dynamic behavior. The features have been also taken into
account to address the stability issue by using a number of ther-
modynamics based approaches usually limited to (local) stability
analysis of single unit operation, i.e. chemical reactors (Balaji et al.,
2010; Dammers and Tels, 1974; Favache and Dochain, 2009; Hoang
et al., 2011, 2012a,b, 2013; Hoang and Dochain, 2013a,b; Ramirez
et al., 2013; Tarbell, 1977); however it appears that even for simple
reactions, analysis and control issues using thermodynamic
properties are still open problems (Hoang et al., 2012a), for
instance global stability analysis, reacting systems with multiple
complex reactions (van der Schaft et al., 2015) and the effect of the
interconnection of several thermodynamic systems. Among the
quantities identified in recent research for stability analysis of
closed and open processes, internal entropy production offers
some flexibility and recently, García-Sandoval et al. (2015) ana-
lyzed the stability and passivity properties of a class of ideal gas
chemical reactors considering the internal entropy production as a
Lyapunov function candidate in order to prove the isolated reactor
stability properties and as a storage function to explore the pas-
sivity properties when the reactor interacts with the surroundings.

In this contribution, we extend the results presented in García-
Sandoval et al. (2015) to a general case where several inter-
connected thermodynamic subsystems or units, modeled by spa-
tially homogeneous dynamics that may include internal processes
like chemical reactions, interact among them through mass and
heat transfer flows and with the surroundings through convective
flows. Then, exploiting the fact that the entropy production is
(semi)-positive definite and the Hessian of the entropy is (semi)-
negative definite, the stability and passivity properties of this class
of systems are addressed by using the internal entropy production
as a Lyapunov-candidate function when the system is isolated and
as a storage function when the system interacts with the sur-
roundings. Then, based on the passivity results, the (quasi-)Port-
Hamiltonian representation for the thermodynamical systems in
study is obtained a posteriori and is not required to investigate
stability. The paper in study is organized as follows. We shall first
introduce in Section 2 the fundamental thermodynamical basis
related to the intensive and extensive properties of systems as well
as their entropy and entropy production. Then in Section 3 the
core of the paper is presented; it is shown that the internal
entropy production can be considered as a Lyapunov function
candidate for the isolated system and conditions to guarantee

asymptotic stability are established. Then, the same internal
entropy production is used as a storage function when the system
interacts with the surroundings in order to show its dissipative or
passivity properties depending on the variables that couple the
system to the surroundings and the system's quasi-port-controlled
Hamiltonian representation is presented. Finally, the theory pro-
posed is applied to three study cases: a heat exchanger, a ideal gas
adiabatic chemical reactor and a ideal gas jacketed chemical
reactor.

2. Fundamentals of thermodynamics

2.1. Extensive and intensive properties

Let us consider a systemΠ composed of n subsystems as depicted
in Fig. 1. The state of each subsystem is described by a primary vector
of non-negative variables called inventories (Farschman et al., 1998)
which is a set or subset of extensive properties U VN , ,i i i{ }, and each
subsystem also has its associated intensive properties T P, ,i i iμ{− } that
are dual to inventories, where Ni

Ci∈ + , Ui ∈ and Vi ∈ + are the
molar, energy and volume inventories, respectively, with Ci being the
number of chemical species interacting in the subsystem i, while

i
Ciμ ∈ + , Ti ∈ + and Pi ∈ + are the chemical potential, and the

absolute temperature and pressure of subsystem i, with
i n1, 2, ,= … , respectively. Depending on the particular configura-
tion and characteristics of each subsystem, the state variables,

i
iη ∈ ω , with C 2i iω ≤ + , are selected as the total extensive variables

( C 2i iω = + ) or a subset of them ( C 2i iω < + ). For instance, if the
process is isochoric, then the state variable vector is defined as

 UNcol ,i i i
Ciη = { } ∈ ( × )+ , while for isochoric systems with only one

incompressible fluid or closed isobaric gas systems with variable
volume, the state variable is defined as Ui iη = ∈ , the only differ-
ence in both cases is the state equation used to describe the relation
between the pressure, the volume and the moles. In this work it is
assumed that each subsystem is spatially homogeneous. It is also
considered that system Π interacts with one or more environments.
Therefore the dynamical model under study in terms of extensive
variables is given by

FMf g: , 1sη η η ηΠ ̇ = ( ) + ( ) ( )

where i ncol , 1, 2, ,iη η= { = … } ∈ ω, with i
n

i1ω ω= ∑ = , and s
sη ∈

representing the vectors of extensive properties of systemΠ and the
surroundings, respectively, while the vector field  f : p→ω is the

Fig. 1. System Π: Schematic subsystems interconnections and exchange with the
surroundings.
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