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H I G H L I G H T S

� This paper studies dynamics of capillary-driven power-law fluids.
� A model for flow in straight tube and Y-shaped tree network is developed.
� The minimum penetration time is found in the optimized structure.
� Unique optimal transport behaviors are analyzed with different power components.
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a b s t r a c t

The engineering and modeling of non-Newtonian power-law fluids (i.e., shear thinning and thickening
fluids) in porous media has received wide attention in natural systems, oil recovery, and microfluidic
devices. In this work, we theoretically explore the dynamics of power-law fluids in the form of capillary
flow confined by a straight tube and a Y-shaped tree network, both of which are basic elements of many
advanced materials. The straight tube and the tree network are composed of sub-tubes with different
radii and lengths. The proposed model reveals that the evolution of the penetration time to the
penetration distance is highly dependent on the viscous and capillary effects. If the viscous resistance is
high, the flow is slow. If the capillary pressure increases, the flow accelerates. An interesting question is
therefore in what optimal structure is the power-law flow fastest, considering different responses of
viscous resistance and capillary force to the structural parameters. Based on optimization of the radius
and length distribution of sub-tubes, we find the minimum penetration time of the fluids or the fastest
flow in both straight tubes and tree networks under size constraints. The unique optimal transport
behaviors of power-law fluids, which are different from those of Newtonian fluids, are analyzed in
details with different power components.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Non-Newtonian power-law fluids have found broad applica-
tions in natural and engineering fields, including microfluidic
devices (Groisman et al., 2003), blood rheology (Fedosov et al.,
2011), oil recovery (Pu et al., 2015), capillary breakup (Zimoch
et al., 2013), and droplet ejection (Bartolo et al., 2007). The power-
law fluid (or the Ostwald–de Waele fluid) in a circular tube is
characterized by a modified Hagen–Poiseuille equation (Christop
and Middlema, 1965)
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where Q is the volume flow rate, n is the power exponent for
power-law fluids, u is the flow velocity, R is the tube radius, p is the
pressure drop along x-direction, and K is the flow consistency
index. Eq. (1) is computed based on the constitutive equation
τ¼ k _γn, where τ and _γ are shear stress and strain rate of the fluid,
respectively. When n¼ 1, the non-Newtonian fluid power-law
fluid becomes Newtonian, and Eq. (1) recovers the Hagen–
Poiseuille equation in laminar regime. When n41, the power-
low fluid is known for shear-thickening or dilatant as viscosity
increases with shear rate. When no1, shear thinning or pseudo-
plastic behavior occurs due to the decrease in viscosity at higher
shear rates. The more generalized model for the non-Newtonian
fluid is described by the Herschel–Bulkley model, τ¼ τ0þk_γn,
where τ0 is the yield stress (Yun et al., 2010). The Herschel–Bulkley
model represents the Bingham plastic fluid with n¼ 1, and
becomes the power-law fluid model with τ0 ¼ 0. Based on the
fractal geometry of porous media (Cai et al., 2010), the flow
behavior of power-low fluids was quantified by fractal dimensions
from single tortuous tubes (Yun et al., 2008) to generous porous
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systems with wide pore size distribution (Zhang et al., 2006).
Eq. (1) was also extended to model the power-law flow through
packed and porous media by introducing the Blake–Kozeny
equation as the permeability (Christop and Middlema, 1965).
Without using empirical constants, a resistance model of power-
law flow in packed beds was recently developed by taking into
account the inertia force (Tang and Lu, 2014). The power-law fluid
through three-dimensional disordered porous media was explored
numerically with a broad range of Reynolds number, and an
enhancement of permeability was found at intermediate condi-
tions due to the interplay of fluid rheology, disordered geometry,
and inertial effects (Morais et al., 2009).

The self-driven power-law fluids caused by the capillary force
have unique transport properties. The capillary dynamics of the
power-law fluids in a uniform circular tube was expressed as a
function of n, and the flow was found to be retarded when the
liquid became more strongly shear-thinning with no1 (Turian
and Murad, 2005). The impact of fluid rheology and dynamic
contact angle on the capillary rise of power-law fluid was explored
experimentally and theoretically (Digilov, 2008). The shear-
thinning fluid under gravity begins to rise faster than the shear
thickening counterpart, but they have the same equilibrium height
with the Newtonian liquid due to self-retardation (Digilov, 2008).
For power-law fluids in conical tubes, asymmetric flow times have
been found from different ends of the tubes, and the asymmetry is
strengthened by shear-thinning fluid but weakened by the shear-
thickening fluid (Berli and Urteaga, 2014). A comprehensive model
is developed to predict the permeability of power-law fluid flow in
fractal-like tree network, and the permeability is found to be a
function of the branching diameter ratio, the branching length
ratio, the total number of branching levels, and the power
exponent of power-law fluids (Wang and Yu, 2011).

Control and acceleration of capillary flow is always advanta-
geous for the applications mentioned above. The manipulated
capillary flow in non-uniform porous structures, in terms of the
evolution of flow distance to time, deviates from the classical
Washburn equation based on uniform tubes (Reyssat et al., 2008,
2009; Shou et al., 2014b, 2014c). As well, the fastest capillary flow
on the basis of Newtonian fluids has been found in the optimally
designed tubes and porous systems (Shou and Fan, 2015; Shou
et al., 2014b, 2014c, 2014d). However, to our best of knowledge,
less studies concern the development and optimization of the fast
capillary-driven power-law fluids. In this context, we aim for
finding the minimum penetration time required for a given
penetration distance, from a straight tube to a tree network. Both
the straight tube and the tree network, which contain sub-tubes
with different radii and lengths, are fundamental elements of
various applications. More specifically, the straight tubes with
varying local radii and lengths are often used in microfluidics
devices (Stone et al., 2004) and found in general porous media
(Yun et al., 2008), while the tree networks conduct blood in body
as vessels (Murray, 1926) and drainage water/oil mixtures in forms
of rock fractures (Wang and Yu, 2011). The investigation of
transport in tree networks was dated back to 1926, when
Murray (1926) found the optimal radius ratio between parent
and daughter branches in a cardiovascular system restricted by
energy expenditure. Based on the contructal theory (Reis, 2006),
the minimization of flow resistance in a simple tree network
under the given volume yields the same optimal radius ratio as
Murray's law (Bejan et al., 2000), as the volume constraint is
equivalent to the constraint of energy expenditure considered by
Murray (1926). Even when the number of branch levels increases,
the optimal radius ratio stays a constant (Kou et al., 2014).
Moreover, the tree network requires a lower pumping power for
transport (Chen and Cheng, 2002). In this work, we focus on
investigating power-law fluids in the tree network, whereas the

tree network becomes a straight tube when the branching number
is unit.

2. Model generation

Capillary fluid, either Newtonian or non-Newtonian, moves
spontaneously in tiny tubes due to the pressure of cohesion and
adhesion. The capillary flow accelerates with the decrease in tube
size as capillary force or capillary pressure increases. Conversely,
the flow slows down with decreasing tube size, generating higher
flow resistance based on Eq. (1). In a uniform tube, the time for a
given flow distance is monotonously dependent on the tube size
or the microstructure, in analogy to Washburn equation. In the
tree network and the straight tube, the sub-tubes have different
radii and lengths, whereas the capillary pressure and the viscous
resistance have different sensitivity to microstructures of the local
sub-tubes at different levels. Therefore, it is possible to find the
minimum penetration flow time in the tree network as well as the
straight tube with the dynamic competition between capillary and
viscous effects. We investigate here the power-law flow through a
multi-level Y-shaped tree network and a multi-section straight
tube constrained by fixed volume and length. The gravitational
force, the liquid evaporation, and the effect of meniscus shape is
neglected, and a large aspect ratio of length to radius of the tubes
is assumed. The fluids are in the continuum regime, as the tubes
concerned in this work are much larger than the size of liquid
molecules.

A Y-shaped tree network and a parallel tube net with the same
volume and length are shown in Fig. 1. The parallel tube net is
used as a control sample, as the flow time for a given total
penetration distance (i.e., the tube length) is constant in a uniform
tube. The influence of the branching angle α is eliminated, since all
sub-tubes in the tree network have the same branching angle with
the parallel tube net. In analogy to Ref. Chen et al. (2007), the
number of parallel tubes is assumed to be equal to that of outlet
tubes of the tree network, viz., m. In Fig. 1, m is equal to 2, while
the tree network becomes a straight tube composed of two
successive sub-tubes when m¼ 1. The lower sub-tube at the
parent branching level is named the first sub-tube, and the upper
sub-tubes at the daughter branching level are named the second
sub-tubes. We define the radius ratio and the length ratio between
the second to the first sub-tubes

e¼ R2

R1
ð2Þ

and

f ¼ h2
h1

; ð3Þ

Fig. 1. Illustration of a Y-shaped tree network (left) and a parallel tube net (right).
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