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a b s t r a c t

We solve the problem of heat conduction in a homogeneous media below a planar boundary subjected to
time-periodic temperature (of frequency x), in the presence of a spherical inhomogeneity (of radius R),
whose center is at distance d > R from the boundary. In the absence of the sphere, the well known one
dimensional solution can be regarded as an oscillating thermal boundary layer of displacement thickness
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2a=x

p
, where a is the heat diffusivity. The general solution depends on four dimensionless param-

eters: d/R, d/R, the heat conductivity ratio j and the heat capacity ratio C. An analytical solution is derived
as an infinite series of Bessel functions, which converges quickly. The results are illustrated and analyzed
for a given accuracy and for a few values of the governing parameters. The general solution can be sim-
plified considerably for asymptotic values of the parameters. A first approximation, obtained for R/d� 1,
pertains to an unbounded domain. A further approximate solution, for R/d� 1, while j and C are fixed,
can be regarded as pertaining to a quasi-steady regime, and is similar in structure to Maxwell’s solution
for steady state. However, its accuracy deteriorates for j� 1, and a solution, coined as the insulated
sphere approximation, is derived for this case. Comparison with the exact solution shows that these
approximations are accurate for a wide range of parameter values. Besides providing insight, they can
be employed for solving in a simple manner more complex problems, e.g. effective properties of a heter-
ogeneous medium made of an ensemble of spherical inclusions.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

We consider here the problem of heat conduction into the half
space, below a planar boundary subjected to time-periodic temper-
ature. The medium of constant properties (conductivity, diffusivity)
contains a spherical inclusion of different constant properties.
While the solutions for a homogeneous medium or an isolated
sphere subjected to given time dependent temperature on its
boundary are well documented ([1] – Chapters 7, 8 and 11), much
less is known for configurations similar to the present one. There
is vast literature on the steady state problem (applicable to similar
processes like electrical conduction, diffusion and flow through
porous media) subjected to a uniform field at infinity, starting with
the classical Maxwell solution [2]. Among the few previous works
on the unsteady problem, the recent studies [3,4] are most relevant
to the one pursued here. Though we follow their general approach
of expanding the solution of the governing Helmholtz equation in a
series of eigenfunctions, we explicitly derive the solution for the
half space with periodic temperature variations, whereas they pro-
vide a general approach for an infinite domain solely. Furthermore,

we present here for the first time a full analytical solution to the
above problem together with simple approximate solutions which
lend themselves to physical interpretation. Such solutions may be
extremely useful when solving more complex problems.

The recent article of [5] also addresses a similar time dependent
problem for a spherical inclusion, yet it is limited to a highly con-
ducting sphere with only radial dependence of temperature and it
assumes heat generation. Another article which solves a mathe-
matical problem similar to that of this work and presents some
approximations as well is [6]. Nevertheless, the problem consid-
ered there is of diffusive interaction between two ideal sinks,
which is not time periodic and has simpler boundary conditions.

The applications of primary interest to us are of a geophysical
nature, e.g. the impact of heterogeneity upon heat flow through
the earth crust under periodic diurnal or annual temperature vari-
ations or the related problem of fluid flow through elastic porous
formations in the soil. However, other potential applications like
heat exchange between blood tissue and embedded blood vessels
[7], the hydrocooling of fruits or vegetables of spherical shape [8]
and experimental methods for specifying the thermal diffusivity
of materials [9], can also be envisaged. Similarly, the present solu-
tion may constitute the first step toward determining equivalent
properties of heterogeneous media under unsteady conditions.
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Thus, we consider the problem addressed here as of fundamental
nature in view of the possible ramifications of the solution.

The plan of the paper is as follows: the problem is stated mathe-
matically in Section 2 and its exact solution is derived subsequently
in Section 3, expressed in terms of the various dimensionless param-
eters of the problem. Two simple solutions coined here as complex
Maxwell (CM) and the insulated sphere approximations (ISA) are
derived in Section 4 and their accuracy is determined by comparison
against the exact one. The impact of the spherical inhomogeneity
upon the surface heat flux, which is perpendicular to the planar
boundary, is examined in Section 5. The paper is concluded with a
summary and discussion in Section 6.

2. Mathematical statement

We consider a semi-infinite domain subjected to periodic tem-
perature variation and enclosing a spherical body of radius R
(Fig. 1). The boundary temperature is assumed to be constant in
space and to vary sinusoidally in time. We further assume a med-
ium of constant ambient thermal diffusivity, aex, with a spherical
inhomogeneity of radius R and diffusivity ain located at a depth
d P R from the surface (aex=in ¼ Kex=in= qex=in � C

ex=in
p

� �
, where K is

the heat conductivity, q the density and Cp the specific heat of
the two media). For convenience we use both cartesian and spher-
ical coordinates defined by x = rsinhcosu, y = rsinhsinu and
z = rcosh, taking the origin of the axis to be at the sphere center
(see Fig. 1). The governing equations for the temperature of the
sphere interior (denoted ‘‘in’’) and the exterior temperature (de-
noted ‘‘ex’’) are

@Tex=in

@t
¼ aex=in � r2Tex=in z 6 d ð1Þ

with the boundary conditions

Tex ¼ T0 cosðxtÞ; z ¼ d ð2aÞ
Tex ¼ Thom; r !1 ð2bÞ

where x is the prescribed frequency of the surface temperature and
Thom is the solution for the temperature field in the homogeneous
medium of diffusivity aex. The usual conditions for continuity of
temperature and heat flux across the spherical boundary are as
follows:

Tex ¼ Tin; r ¼ R ð3aÞ
@Tex

@r
¼ j

@Tin

@r
; r ¼ R ð3bÞ

where j = Kin/Kex.
We reformulate the problem with the aid of dimensionless vari-

ables, to simplify its parameter dependence. Thus, variables are
normalized by using R as length, x�1 as time and T0 as temperature
scales. Hence, the dimensionless variables are defined by x/R, y/R,
z/R, r/R, d/R, T/T0, aex/in/xR2, xt and for convenience we maintain
the original notation for these variables in the following. The
boundary condition (2a) implies the solution is of the form
T ¼ Re½bTeit� allowing us to solve for the time independent variable,bT . The following modified Helmholtz equations are then derived
from (1) for the complex temperatures bT ex=in

r2bT ex=in ¼ k2
ex=in � bT ex=in ð4Þ

where kex=in ¼ ðiþ 1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aex=in

p
. The boundary conditions (2a,b) satis-

fied by bT ex are consequentlybT exðx; y;dÞ ¼ 1; bT ex ! bT hom ðfor r !1Þ ð5Þ

The solution of the heat flow problem in a homogeneous media was
presented and analyzed in [1] (Section 2.6) and is given by

bT hom ¼ ekexðz�dÞ; i:e: jbT homj ¼ eðz�dÞ=
ffiffiffiffiffiffiffi
2aex

p
¼ eðz�dÞ=d

argðbT homÞ ¼ ðz� dÞ=
ffiffiffiffiffiffiffiffiffi
2aex

p
¼ ðz� dÞ=d

ð6Þ

where d ¼
R d
�1 jbT homjdz ¼

ffiffiffiffiffiffiffiffiffiffiffi
2aext
p

is the displacement thickness of
the thermal boundary layer defined by jbT homj, a convenient length
scale characterizing the depth of penetration into the medium.

It is convenient to recast the problem for T 0ex, the normalized
perturbation temperature associated with the spherical inclusion,
defined bybT ex ¼ e�kexdT 0ex þ bT hom ¼ e�kexd T 0ex þ ekexz

� �
; r P 1 ð7Þ

while T 0in is defined bybT in ¼ e�kexdT 0in; r 6 1 ð8Þ

Thus, it is found from (4), (5) and (3a,b) that the complete set of
equations and boundary conditions satisfied by T 0ex=in are as follows:

r2T 0ex � k2
ex � T

0
ex ¼ 0; z 6 d; r P 1 ð9aÞ

r2T 0in � k2
in � T

0
in ¼ 0; z 6 d; r 6 1 ð9bÞ

T 0ex ¼ 0; z ¼ d ð10aÞ
T 0ex ¼ 0; r !1 ð10bÞ

T 0in � T 0ex ¼ ekexz; r ¼ 1 ð11aÞ

j
@T 0in
@r
� @T 0ex

@r
¼ @

@r
ekexz; r ¼ 1 ð11bÞ

It is seen that for j = 1 and aex = ain the solution of the system
(9)–(11) is given by T 0ex � 0; T 0in ¼ ekexz, i.e. bT � bT hom:

Defining the ratio C ¼ qexCex
p

� �
= qinCin

p

� �
along with the rela-

tionships aex = d2/2 and ain = jCd2/2, renders the temperature fields
as functions of four independent dimensionless parameters: j, d, C
and d.

3. Exact solution

The general solution of (9a,b) for T0 is given for the sphere exte-
rior and interior, respectively, by [10]:

X1
n¼0

Xn

m¼�n

AnmeimuPm
n ðlÞ

knðkex � rÞ
knðkexÞ

; r P 1 ð12aÞ

X1
n¼0

Xn

m¼�n

AnmeimuPm
n ðlÞ

gnðkin � rÞ
gnðkinÞ

; r 6 1 ð12bÞFig. 1. The setup of the problem as formulated by (1) and (2a,b). The sphere and its
image are denoted by a solid and dashed circle respectively and a planar boundary
is located at a distance d above the sphere center.
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