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H I G H L I G H T S

� SBMCMD framework is a combination of model selection and design of experiment (DOE).
� SBMCMD has the ability of handling nonlinear systems using MCMC methods.
� Adaptive MCMC sampling method has been used in the new implementations of SBMCMD.
� Applying DOE lets to discriminates models with the minimum number of experiments.
� The effect of the preliminary data and experimental error has been discussed.
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a b s t r a c t

Sequential Bayesian Monte Carlo Model Discrimination (SBMCMD) framework has been previously
proposed by the authors for the purpose of determining the underlying mechanisms of a system such as
a chemical reaction (Masoumi et al., 2013). SBMCMD relies on sampling from the model parameters
distribution using Markov Chain Monte Carlo, MCMC, methods. Effective tuning of MCMC methods,
when applying to some nonlinear models, can be tedious and challenging. This limits using SBMCMD in
many practical applications. The aim of this paper is to address this limitation and facilitate exploiting of
the proposed framework with regards to nonlinear structured models. This is achieved by using adaptive
random-walk Metropolis–Hasting method for sampling from the models parameter. This method is an
adaptive MCMC algorithm that takes care of adjusting its parameters automatically.

Two implementations of the adaptive SBMCMD framework have been presented and applied to case
studies. Results of two implementations have been compared, and the effect of preliminary data has
been discussed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The objective of model discrimination techniques is to select
the “best” among a set of proposed candidate models. This work
deals with the problem of determining an underlying physical or
chemical mechanism of a system; hence the considered candidate
models are mechanistic in nature. In particular we are interested
in determining chemical reaction mechanisms, which leads to
nonlinear in parameter models with generally more complicated
structures comparing with empirical models.

Sequential model discrimination refers to procedures in which a
Design of Experiments (DOE) technique is used in conjunction with

a model selection method. Gathering experimental information, for
example in the case of reaction kinetics, could be expensive and
time-consuming. The DOE step helps to find experimental condi-
tions that contain the maximum information with respect to the
model discrimination objective. Consequently, the “best” model
could be discriminated in the minimum number of experiments.

To be clear, in this paper the term model selection refers to the
mathematical process of selecting a model from a candidate set,
given data. On the other hand, the term model discrimination
indicates a sequential, iterative process, including experimental
design and model selection. A recent elegant paper by Galagali and
Marzouk (2014) presented a Bayesian model selection algorithm
for kinetic models of chemical reactions.

SBMCMD which stands for Sequential Bayesian Monte Carlo
Model Discrimination is a framework for model discrimination
rather than only model selection, the novelty of which is that, it is
a combination of a well-known model discrimination experimental
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design procedure with MCMC marginalization likelihood model
selection methods, thus yielding a general Bayesian sequential
framework of great value to practicing engineers and scientists.

Markov Chain Monte Carlo (MCMC) methods have been used in
the SBMCMD to overcome the need for model linearization, which
is required in most sequential model discrimination methods
described in the literature, for example Buzzi Ferraris et al.
(1984), Buzzi-Ferraris and Forzatti (1983, 1990), Stewart et al.
(1996), Ucinski and Bogacka (2005) and Schwaab et al. (2006).
The methods presented in this paper, are new implementations of
the previously presented framework by the authors (Masoumi
et al., 2013). In the new implementations, adaptive random walk
Metropolis–Hasting, MH, method is used instead of acceptance-
rejection method that has been used in the previous paper of
authors. As a result, adaptive sampling fine tunes the multi-
dimensional MH with no need for any information about the
parameters distribution or expert judgment. In what follows we
first establish the general idea of a Bayesian sequential model
discrimination framework in Section 2. Sections 3 and 4 describe
the model selection and experimental design criteria which have
been implemented in SBMCMD. In Section 5 the details of the
Adaptive Proposal (AP) Random Walk Metropolis Hasting algo-
rithm, which is used in the execution of the MCMC marginal
likelihood model selection methods, are presented. Then, in
Section 6 two alternative implementations of the adaptive
SBMCMD framework are introduced. Section 7 shows a reaction
kinetics example, and finally we make some concluding remarks
in Section 8.

2. A Bayesian sequential model discrimination framework

Suppose we have n observations y which are dependent upon a
set of parameters θ. Applying Bayes’ theorem (Box and Tiao, 1992)
results in Eq. (1):

P θjyð Þpπ θð ÞlðθjyÞ ð1Þ
where P θjyð Þ denotes the posterior probability of parameters
given observed data y, π θð Þ the parameter prior probability which
represents the already available information and lðθjyÞ, the like-
lihood of θ given the data. Considering K candidate models to
represent the underlying model of a system, Eq. (1) can be cast
into a suitable form for discriminating the “best” one. For this
purpose, parameter θ should be replaced by the model index Mk,
where represents the kth rival model. Hence, Bayes’ theorem could
be re-written as Eq. (2) for any of the K candidate models:

P Mk jyð Þpπ Mkð ÞL Mk jyð Þ k¼ 1;…;K ð2Þ
In the above equation, the likelihood, represented by L, is the

likelihood of the model given the data which its estimation
methods will be explained in the next section.

A non-sequential model selection method uses Eq. (2) just
once. By contrast, a sequential model discrimination method uses
Bayes’ formula repeatedly as new data points become available
until a stop criterion is satisfied. This process is represented by the
following pseudo-code.

Inputs:
K: Number of rival models
Nmax experiment: Maximum number of experiments
Pselection criterion: Stop criterion probability
y0: Preliminary information
x: Input condition

Algorithm:
Set rival model priors:P0ðMk jy0Þ

for t¼1 toNmax experiment

Design the next experiment inputs xt
Carry out the experiment to observe the new output data yt
for k ¼ 1 to K0
@Estimate LðMk jytÞ

Update posterior probability :

PtðMk jytÞ ¼ Pt−1ðMk jyt−1ÞLðMk jytÞ=ΣkPt−1ðMk jyt−1ÞLðMk jytÞ
stop if ∃ k ∈ f1;…;Kg : PtðMk jytÞ4Pselection criterion
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In the above yt represents the vector of all observed data collected
up to and including experiment t and yt is the observed data at time t.

Please note that SBMCMD is a model discrimination method,
therefore it is based on the assumption of having one model among
the rival ones which can predict the system behavior better than the
other candidates. Thus SBMCMD may pick the “best” model even if
none of the candidate models can represent the system. Due to this,
an adequacy check could be applied after model discrimination to
make sure that the final model can actually predict the system
behavior. For the adequacy check and when the purpose of model
discrimination is obtaining a model to predict the system behavior,
best parameters value in the selected model are needed. In the
process of SBMCMD procedure, parameters distribution in each
candidate model is also obtained. So when the SBMCMD stops, the
selected model may have a single-modal parameter distribution. In
this case the selected model along with the parameter with highest
probability could be used to represent the system. Otherwise, a
model regression method should be followed by the model discri-
mination to find the parameters of the model.

3. Model selection methods

Estimation of the models likelihood, LðMk jytÞ will be studied in
this section since it is the main part of model selection methods.
Two of the most popular types of model selection methods are
marginalized likelihood methods and those which are based on
information criteria.

Methods based on information criteria compare rival models
according to their maximum likelihood. These methods penalize
the number of parameters. Because without a penalty factor, the
models with the larger number of parameters give a better fit to
the data points, even though the model with the larger number of
parameters does not necessarily predict the system behavior
better. Some examples of information criteria model selection
methods are Akaike’s information theory, AIC, (Akaike, 1987), and
Bayesian information criteria, BIC (Schwarz, 1978). Mallows’s Cp
(Mallows, 1973) is another criterion similar to the information
criteria which also considers an approximation of the true error.

The marginalization likelihood model selection methods make
up another category of model selection methods. The Marginal
likelihood, which is also referred to as “evidence” of each model, is
calculated by integrating out the model parameters from the
likelihood equation of the model as shown in Eq. (3).

LðMk jyÞ ¼
Z
θ
l θjMk; yð Þπ θjMkð Þdθ ð3Þ

where l θjMk; yð Þ represents the likelihood of the parameters θ
given the model Mk; π θjMkð Þ is the prior probability of parameters
under model Mk, and y is the vector of all data points. Bayesian
model selection methods, which exploit the marginal likelihood,
are called marginalized methods. These methods have become
more popular with the advance in computing facilities. Because,
most of these methods need more extensive numerical
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