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a b s t r a c t

Radiative–conductive heat transfer in a medium bounded by two reflecting and radiating plane surfaces
is considered. This process is described by a nonlinear system of two differential equations: an equation
of the radiative heat transfer and an equation of the conductive heat exchange. The problem is character-
ized by anisotropic scattering of the medium and by specularly and diffusely reflecting boundaries. For
the computation of solutions of this problem, two approaches based on iterative techniques are consid-
ered. First, a recursive algorithm based on some modification of the Monte Carlo method is proposed. Sec-
ond, the diffusion approximation of the radiative transfer equation is utilized. Numerical comparisons of
the approaches proposed are given in the case of isotropic scattering.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The study of the coupled heat transfer [1–3] where the radiative
and conductive contributions are simultaneously taken into ac-
count is important for many engineering applications. So, Andre
and Degiovanni [4,5], Banoczi and Kelley [6], and Klar and Siedow
[7] have studied the thermal properties of some semi-transparent
and insulating materials in the context of a coupled radiative–con-
ductive model. The mathematical treatment of this nonlinear mod-
el is studied in [8–11]. In [8], Siewert and Thomas use the simple
iteration method and a computationally stable version of the PN

approximation. In work [9], Siewert has applied the Newton itera-
tion method instead of the simple iteration procedure. This allows
the author to calculate some numerical examples which are not
feasible using the simple iteration method (compare [8]). Kelley
has provided existence and uniqueness theorems for the consid-
ered problem in the case of isotropic scattering and non-reflecting
boundaries [10]. An analytical version of the discrete-ordinates
method along with Hermite’s cubic splines and Newton’s method
to solve a class of coupled nonlinear radiation–conduction heat
transfer problems in a solid cylinder is proposed in [11]. The algo-
rithm is implemented to establish high-quality results for various
data sets which include some difficult cases.

In our paper, some iterative algorithm for solving this problem
is considered. For the calculation of solutions of the radiative trans-
fer equation, two ways are used. The first approach proposed by
the authors utilizes a recursive algorithm based on some modifica-
tion of the Monte Carlo method. This algorithm suits for the appli-
cation of parallel calculations, and hence it can provide a good
accuracy within a reasonable computing time. The second ap-
proach uses the diffusion approximation of the radiative transfer
equation. It is shown that using this approximation gives a good
description of the solution behavior. A numerical comparison of
the approaches proposed is done in the case of isotropic scattering
and reflecting boundaries. The calculations are implemented on a
computer cluster of the Technical University of Munich using the
technology of parallel computing supported by the application pro-
gramming interface OpenMP.

2. Problem formulation

Let us consider the coupled radiative–conductive heat transfer
problem which is formulated as in [8,9]. The equation of the radi-
ation transfer for a homogenous layer is written in the normalized
form as

lIsðs;lÞ þ Iðs;lÞ ¼ x
2

Z 1

�1
pðl;l0ÞIðs;l0Þdl0 þ ð1�xÞH4ðsÞ; ð1Þ

where I(s,l) is the normalized density of the radiation flux at the
point s e [0,s0] in the direction which angle cosine with the positive
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direction of the axis s is l e [�1,1]; x < 1 the albedo of single scat-
tering; p(l,l0) the phase function; H(s) the normalize temperature.
Note that the case of non absorbing media (x = 1) is excluded from
the consideration as unrealistic. Introduce the following sets for the
definition of boundary conditions:

C� ¼ ðf0g � ð0;1�Þ [ ðfs0g � ½�1; 0ÞÞ;
Cþ ¼ ðf0g � ½�1;0ÞÞ [ ðfs0g � ð0;1�Þ:

We supply Eq. (1) with the boundary conditions

Iðn;lÞ ¼ hðnÞ þ ðBIÞðn;lÞ; ðn;lÞ 2 C�; ð2Þ

where the function h and the operator B are defined by

hð0Þ :¼ e1H
4
1; ðBf Þð0;lÞ :

¼ qs
1Ið0;�lÞ þ 2qd

1

Z 1

0
Ið0;�l0Þl0dl0; l > 0;

hðs0Þ :¼ e2H
4
2; ðBf Þðs0;lÞ :

¼ qs
2Iðs0;�lÞ þ 2qd

2

Z 1

0
Iðs0;l0Þl0dl0; l < 0:

Here, H1 and H2 are the normalized temperatures on the bound-
aries; qs

i and qd
i the coefficients of specular and diffuse reflections,

respectively; ei ¼ 1� qs
i � qd

i the emissivity coefficients for the
boundary surfaces. It is assumed that e1, e2 > 0, which provides the
estimate kBk < 1 (see Section 3). Note that the first summand on
the right-hand side of the definition of the operator B describes
the contribution of the specular reflection, whereas the second
one describes the contribution of the diffuse reflection.

The equation of the conductive heat transfer is written as

H00ðsÞ ¼ 1
2Nc

Z 1

�1
Iðs;lÞldl

� �0
; ð3Þ

and Nc is the conduction-to-radiation parameter [8]. For Eq. (3), we
set the following boundary conditions:

Hð0Þ ¼ H1; Hðs0Þ ¼ H2: ð4Þ

For finding the solution of system (1)–(4), we will use a simple
iteration method with parameter. According to that, choose an
initial approximation of the temperature H(s) (for example, the
linear approximation which corresponds to zero value of the

right-hand side of (3)) and denote it as Hh0iðsÞ. Then, substitute
Hh0iðsÞ into (1) instead of the function H(s), find the solution of
the problem (1) and (2), and denote it as Ih1iðs;lÞ. Then, find the
solution of the problem (3) and (4) under the given function
Ih1iðs;lÞ and denote it as ~Hh1iðsÞ. Choose a small positive real a
and set Hh1iðsÞ ¼ a ~Hh1iðsÞ þ ð1� aÞHh0iðsÞ to be the next approxi-
mation of H(s). Then, put Hh1iðsÞ instead of the function H(s) into
Eq. (1), find the next approximation Ih2iðs;lÞ, and so on. Thus, in
the jth step, we use the functions Hhj�1iðsÞ and ~HhjiðsÞ to determine
the next approximation of the function H(s) by the following
formula:

HhjiðsÞ ¼ a ~HhjiðsÞ þ ð1� aÞHhj�1iðsÞ: ð5Þ
The main complexity in the numerical realization of this itera-

tive method is finding the solution of the radiative transfer Eq.
(1). For its treatment, we will mainly use a recursive algorithm
based on the Monte Carlo method. As alternative, we will construct
a diffusion approximation of Eq. (1) (P1 approximation). We will
compare the results of these approaches with the numerical data
from [8,9].

3. Solvability of the radiative transfer equation

Let us consider the problem (1) and (2). We assume that the
function H(s) is nonnegative, and H(s) e Cb(0, s0), where Cb(X) is
the Banach space of functions bounded and continuous on X with
the norm kukCbðXÞ ¼ sup

x2X
juðxÞj. Also, let pðl;l0Þ 2 CbðX�XÞ, where

X ¼ ½�1;0Þ [ ð0;1�, and

1
2

Z 1

�1
pðl;l0Þdl0 ¼ 1:

Note that the operator B : CbðCþÞ ! CbðC�Þ is linear, bounded, non-
negative, and

kBk � max
i
ðqs

i þ qd
i Þ < 1:

Denote X ¼ ð0; s0Þ � ð½�1;0Þ [ ð0;1�Þ. We define a class D(X) where
solutions I of the problem (1) and (2) are sought.

A function I(s, l) belongs to D(X), if the following properties hold:

(1) I(s, l) is absolutely continuous in s e (0, s0] for all l > 0, and
absolutely continuous in s e [0, s0) for all l < 0;

Nomenclature

A an integral operator
B operator of reflection
Cb Banach space of bounded and continuous functions
D a functional class
I normalized density of the radiation flux
Ihji radiation flux in the jth step of the iterative procedure
In radiation flux in the nth step of the recursive procedure
h input radiation flux
L a linear operator
M number of recursive trajectories
N number of summands of the truncated Neumann series
Nc conduction-to-radiation parameter
p phase function
S an integral operator
T operator of the Neumann series
X the set of optical and angular variables

Greek symbols
a iteration parameter
C� a set used in the definition of boundary conditions

C+ a set used in the definition of boundary conditions
H1 normalized temperature on the left boundary
H2 normalized temperature on the right boundary
H normalized temperature
Hhji temperature in the jth step of the iterative procedure
e1 emissivity coefficient of the left boundary
e2 emissivity coefficient of the right boundary
x albedo of single scattering
l angular variable
s optical depth (point of the layer)
s0 optical thickness of the layer
n boundary point
qd

1 coefficient of diffuse reflection of the left boundary

qd
2 coefficient of diffuse reflection of the right boundary

qs
1 coefficient of specular reflection of the left boundary

qs
2 coefficient of specular reflection of the right boundary

/0 diffuse approximation of the average flux
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