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H I G H L I G H T S

� Temperature swing profiles for batch crystallization are optimized.
� Model and operating condition perturbations are considered in the optimization.
� Robust performance is evaluated through Monte Carlo simulation.
� Measures for improvement are suggested based on the k-means clustering analysis.
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a b s t r a c t

Robust optimal temperature swing operations for a seeded batch cooling crystallization process with size-
dependent kinetics were derived for minimizing the amount of fines, and their robust performances were
evaluated through simulation studies. The nominal optimal temperature swing profile, which does not
incorporate any model errors or operating condition perturbations in the optimization calculation, was
found to have a robustness problem. Complete dissolution of seed crystals may occur because of the
temperature swing operation, although the temperature swing, if appropriately applied, can significantly
reduce the amount of fine crystals. The robust optimal trajectory, which was obtained from a robust
particle swarm optimization calculation by considering model errors, outperformed the nominal trajectory
model, avoiding complete dissolution in all 50 000 cases in a Monte Carlo experiment. Furthermore,
k-means clustering analysis was applied to the simulation data to reveal that the performance was still
sensitive to initial perturbations in the operating conditions, i.e., the initial super-saturation and seed size.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Batch crystallization is used extensively in the chemical and
pharmaceutical industries for separation and purification, to produce
small-volume, high-value-added specialty chemicals. Control of the
crystal size distribution is an important issue because it has a
significant effect on the efficiency of down-stream operations such
as filtration and drying.

Open-loop temperature profiles that yield desired crystal size
distributions have been extensively studied. Mullin and Nývlt (1971)
derived a profile that gives seeded systems with constant nucleation
and growth rates. They experimentally confirmed that the derived
programmed cooling produces crystals with a larger average size
compared with those obtained by uncontrolled natural cooling. Jones
(1974) derived a size-optimal-controlled cooling profile, which aims

at maximizing the terminal size of the seed crystals based on the
moment transformation model of the population balance. He experi-
mentally showed that the size-optimal cooling policy results in an
improved terminal mean crystal size compared with those obtained
using previous operating policies such as natural cooling, linear
cooling, and a constant nucleation rate. Since then, many researchers
have derived optimal cooling profiles for such objectives as minimiza-
tion of coefficients of variation, the amount of nucleus-grown crystals,
and maximization of seed growth. Ward et al. (2006) summarized the
optimal cooling policies for these common objectives.

Although most of those studies assumed monotonic decreasing
temperature trajectories for ease of operation, some experimental
studies (Moscosa-Santillán et al., 2000; Takiyama and Sindo, 2002;
Harner et al., 2009; Bakar et al., 2009) have achieved significant
improvements in the crystal size distribution by incorporating
crystal dissolution into the batch operation. It has also been shown
that the influence of temperature swings is further enhanced if the
crystallization kinetics is size dependent (Shoji et al., 2011; Nagy
et al., 2011; Jiang et al., 2014a). Generally, smaller crystals dissolve
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faster, but larger crystals grow faster; this implies that temperature
swing operations are advantageous for reducing the amounts of
crystal fines.

However, controlled cooling, defined here as a more sophisti-
cated temperature trajectory compared with simple cooling such as
linear and natural cooling implemented in an open-loop fashion,
has severe robustness problems (Bohlin and Rasmuson, 1992; Ma
et al., 1999; Nagy and Braatz, 2004, 2012; Seki et al., 2012). Bohlin
and Rasmuson (1992) showed through extensive simulation studies
that the performance of controlled cooling is very sensitive to
model errors and perturbations, especially to perturbations in the
initial super-saturation. The effects of using controlled cooling and
seeding are highly unpredictable without appropriate kinetics and
very accurate control; controlled cooling may even produce sig-
nificantly smaller product crystals. Ma et al. (1999) provided a
systematic robustness analysis for batch cooling crystallization of
potassium nitrate, and they showed that approximately 50% of the
expected benefits of optimal control could be lost as a result of
temperature control implementation uncertainties as small as
0.1 1C; this is very challenging for an industrial crystallizer. A recent
review of optimization and robustness issues in crystallization can
be found in Nagy and Braatz (2012).

In this study, we derived robust optimal temperature swing
trajectories for minimizing the amount of fines through numerical
simulation studies. Robust optimal temperature trajectories have
already been derived for some sets of uncertain parameters in the
crystallization model (Ma et al., 1999; Nagy and Braatz, 2004), but
we consider perturbations in the initial super-saturation for the
robust optimization problem, which has a significant effect on the
product size distribution, as discussed by Bohlin and Rasmuson
(1992) (changes in solubility may typically occur in practice because
of the presence of inorganic salts or other contaminants in the
feedstock, Nagy et al., 2008). First, the nominal optimal temperature
trajectories were calculated, using the particle swarm optimization
(PSO) method (Kennedy and Eberhart, 1995), to show the advantage
of temperature swing operations. A robust optimization problem,
which took model errors and operating condition perturbations into
account, was then introduced to find robust optimal temperature
trajectories. Finally, a Monte Carlo simulation was performed to
evaluate the robust performances of the obtained optimal tempera-
ture trajectories.

This paper is organized as follows. In Section 2, a batch cooling
crystallizer model and its operating scenario are introduced; these are
used for the optimization and simulation calculations in the following
sections. In Section 3, a nominal optimization problem, which does
not consider any model perturbations, is formulated to find a cooling
profile that minimizes the amount of fine crystals. In Section 4, a
robust optimization problem is considered, which incorporates model
and operating condition perturbations. Section 5 compares the robust
performance of the nominal and robust optimal trajectories obtained
in the previous sections through a Monte Carlo experiment. Further-
more, cluster analysis is applied to the data obtained in the Monte
Carlo experiment to identify the effects of model perturbations on the
robust performance. Finally, conclusions and future work are given in
Section 6.

2. Mathematical model and operating scenario

2.1. Mathematical model

A population balance model for a batch crystallizer with one
characteristic length L is described by (Rawlings et al., 1993)

∂f ðL; tÞ
∂t

þ∂GðL; SÞf ðL; tÞ
∂L

¼ 0; ð1Þ

subject to the initial condition:

f ðL;0Þ ¼ f 0ðLÞ; ð2Þ
and the boundary condition:

f ð0; tÞ ¼ BðS;μ3ðtÞÞ
Gð0; SÞ ; ð3Þ

where f ðL; tÞ is the population density function, GðL; SÞ is the size-
dependent linear growth rate which is also a function of the
relative super-saturation S, f 0ðLÞ is the initial population density of
the seed crystals, and BðS;μ3ðtÞÞ is the rate of nucleation which is a
function of S and the third moment μ3ðtÞ of the size distribution.
The relative super-saturation S and the ith moment of the
distribution are defined respectively by

S¼ CðtÞ�CnðTðtÞÞ
CnðTðtÞÞ ; ð4Þ

μiðtÞ ¼
Z 1

0
Lif ðL; tÞ dL; ð5Þ

where C(t) and T(t) are the solute concentration and the crystallizer
temperature at time t respectively, and CnðTðtÞÞ is the saturation
concentration at temperature T(t). The solute concentration C(t) is
determined by the material balance and is described by

CðtÞ ¼ Cð0Þ�ρckvfμ3ðtÞ�μ3ð0Þg; ð6Þ
where ρc is the density of the crystals, kv is the volumetric shape
factor.

The kinetics of crystal birth, growth, and dissolution are given by

BðS;μ3ðtÞÞ ¼ kbS
bμ3ðtÞ ð7Þ

GðL; SÞ ¼
kgS

gð1þαgLÞβg SZ0

kdSð1þαdLÞβd So0

(
: ð8Þ

The model parameters, which are those for a potassium nitrate/water
system (Chung et al., 1999), are listed in Table 1. It should be noted
that the dissolution kinetics as well as the size dependence of the
growth and dissolution kinetics are fictitious. The dissolution rate
parameter is set so that the dissolution rate is of the same order of
magnitude as the growth rate, and a first-order dependence on the
degree of under-saturation is assumed (Noyes and Whitney, 1897; Lu
et al., 1993; Gu et al., 2002). The size dependence parameters are
determined so that the assumed size dependence is not far from the
reported values for other substances (Mydlarz and Jones, 1993; Shoji
et al., 2011; Jiang et al., 2014a).

2.2. Operating scenario

The assumed scenario for crystallizer operation is as follows.
Initially, the crystallizer is loaded with a feed solution whose satura-
tion temperature is Tfeed. At the beginning of the batch, the crystallizer
is cooled to a temperature below the saturation temperature and then

Table 1
Crystallizer model parameters (Chung et al., 1999).

Nucleation parameter kb (#/s/g-water) 4.64�105

Nucleation parameter b 1.78
Growth parameter kg (m/s) 1.1612�10�4

Growth parameter g 1.32
Growth parameter αg (1/m) 1000
Growth parameter βg 0.5
Dissolution parameter kd (m/s) 1.16�10�4

Dissolution parameter αd (1/m) 1000
Dissolution parameter βd �1.0
Density ρc (kg/m3) 2.11�103

Volumetric shape factor kv 1
Solubility CnðTðtÞÞ (g/g-water) 0:129þ0:00588TðtÞþ0:000172TðtÞ2

H. Seki, Y. Su / Chemical Engineering Science ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

Please cite this article as: Seki, H., Su, Y., Robust optimal temperature swing operations for size control of seeded batch
cooling crystallization. Chem. Eng. Sci. (2015), http://dx.doi.org/10.1016/j.ces.2014.12.027i

http://dx.doi.org/10.1016/j.ces.2014.12.027
http://dx.doi.org/10.1016/j.ces.2014.12.027
http://dx.doi.org/10.1016/j.ces.2014.12.027


Download English Version:

https://daneshyari.com/en/article/6589856

Download Persian Version:

https://daneshyari.com/article/6589856

Daneshyari.com

https://daneshyari.com/en/article/6589856
https://daneshyari.com/article/6589856
https://daneshyari.com

