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a b s t r a c t

The onset of buoyancy-driven convection in an initially quiescent fluid layer confined between two hor-
izontal plates is analyzed theoretically. In case of isothermal heating it is well known that convective
motion sets in when the Rayleigh number Ra exceeds 1708. For Ra > 1708, there are three characteristic
times tc, tD and tu which represent respectively, the critical time to mark the onset of intrinsic instability,
the detection time of motion, and the undershoot time in a plot of the heating rate versus time. These
characteristic times are analyzed by employing the numerical method under the single mode of instabil-
ities and fitting some experimental tu-values. The new measures to represent tc and tD are suggested,
based on the growth rates of fluctuations. It is interesting that tc is the invariant but the predicted tD-
and tu-values are dependent upon the magnitude of initial conditions forced. It is shown that for the iso-
thermally heated system of a large Prandtl number the relation of tu ffi 7tc agrees well with the available
experimental tu-values for Ra > 105 and tD is located between tc and tu. This paper removes the confusion
among the characteristic times, tc, tD and tu in the literature on stability. Also the boundary-layer insta-
bility model is discussed in order to analyze turbulent thermal convection heat transfer characteristics in
the fully developed state, based on the present numerical predictions.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Buoyancy-driven convection abounds in nature. Its role in heat
exchangers and also in processes such as chemical vapor deposi-
tion, crystal growth and electroplating is well known. Therefore,
it is very important to predict transfer properties in a number of
processes.

Let us consider an initially quiescent, isothermal fluid layer
placed between two infinite horizontal plates. The bottom plate
is heated isothermally, starting from time t = 0, whereas the top
one is kept at the initial temperature. With very slow heating,
the conduction temperature profile becomes linear as time passes
and steady state buoyancy-driven convection sets in at the critical
Rayleigh number Rac = 1708. On the other hand, with high heating
rates (Ra� Rac) the temperature field becomes nonlinear and
time-dependent. Even though convection is detected experimen-
tally, there is no convincing evidence on the origin of the observed
motion. During the heating period some thermal noise encoun-
tered in the experimental environment may lead to thermal con-

vection. But we do not know what it is and also when it is
initiated. Therefore, for Ra� Rac theoretical pursuit toward non-
linear analysis on the temporal evolution of thermal convection
is formidable. In this connection many researchers have proposed
various models. Morton [1] first suggested the quasi-static model,
where the basic temperature field is frozen at each instant. Subse-
quent models were introduced by Choi et al. [2,3] and Kim and
Choi [4]. But these are not definitive and moreover available
experimental data are limited to those of the undershoot time tu

in systems of large Prandtl number Pr [5,6]. Later, for the forced
convection systems heated from below with constant heat flux,
Park et al. [7,8] analyzed the onset and growth of the fluctuation
by solving nonlinear, single mode disturbance equation numeri-
cally under the proper initial condition.

In this study, Park et al.’s [7,8] approach is extended into the ini-
tially quiescent fluid layer heated isothermally from below. The
nonlinear equations of motion and energy are solved numerically
by employing the finite volume method (FVM), and the growth
of fluctuations is traced with time. Based on the numerical results,
the characteristic times (tc, tD, tu) and also the fully-developed tur-
bulent heat transfer rate will be discussed and compared with
available experimental data.
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2. Governing equations

2.1. Boussinesq approximation

The system considered here is a Newtonian fluid layer with uni-
form initial temperature of Ti (for time t < 0). For t P 0, the bottom
plate of horizontal fluid layer of thickness H is suddenly heated to
Tw, whereas the upper boundary is kept at the initial one Ti. For
high DT = Tw � Ti, buoyancy-driven convection will set in at a cer-
tain time. The dimensionless governing equations for the flow and
temperature fields are expressed using the Boussinesq approxima-
tion by

r � U ¼ 0; ð1Þ

@

@s
þ U � r

� �
U ¼ �rP þ Prr2Uþ PrRahez; ð2Þ

@

@s
þ U � r

� �
h ¼ r2h; ð3Þ

where U, P, h, and ez represent the velocity vector, dynamic
pressure, temperature, and unit vector in the dimensionless vertical
z-direction, respectively. The time, distance, velocity and pressure
have, respectively, the scales of H2/a, H, a/H and qa2/H2. The
temperature has been nondimensionalized as h = (T � Ti)/DT, and
q denotes the fluid density. The important parameters to describe
the present system are the Rayleigh number Ra = gbDTH3/(am), the
Prandtl number Pr = m/a, and the Nusselt number Nu = qwH/(kDT),
where g, b, a, m, qw and k denote the gravitational acceleration con-
stant, thermal expansivity, thermal diffusivity, kinematic viscosity,
bottom heat flux, and thermal conductivity, respectively. For con-
duction the time-dependent temperature profile is well known
(e.g., see Foster [9]).

2.2. Mean-field equations and temporal growth rates

For Ra P 1708 the temperature and velocity fields are decom-
posed into the horizontal mean and its fluctuations:

h ¼ hhi þ h0; U ¼ hUi þ U0: ð4a;bÞ

The fluctuations depend on s, x, y and z, where x and y are the
Cartesian coordinates on the horizontal plane. With infinitesimal

fluctuations the conduction state is dominant and linear theory is
applicable.

In the present system, thermal convection sets in due to buoy-
ancy forces and its dimensional magnitude FB is represented by

FB ¼ qgbjT � Tij; FB ¼ FB;0 þ FB;1; ð5a;bÞ

which are produced by temperature variations. The buoyancy forces
based on the mean temperature and its fluctuations can be written
as (FB,0,FB,1) = (hhi, |h0|)qgbDT. These buoyant forces are closely re-
lated with the so-called thermal energy. To examine the temporal
behaviors of thermal instabilities, the following temporal growth
rate of the mean value and that of its fluctuations are defined,
respectively:

r0;T ¼
1
hhirms

dhhirms

ds
; r1;T ¼

1
h0rms

dh0rms

ds
: ð6a;bÞ

Here the subscript ‘rms’ refers to the root-mean-square quantity,
i.e., (g)rms = [

R
v|(g)|2dV/V]1/2, where V represents the volume of the

system considered. The maximum temperature or thermal energy
may be used instead of the rms values of temperature fields. Simi-
larly, the temporal growth rate of velocity fluctuations is defined as

r1;V ¼
1

jU0jrms

djU0jrms

ds
;

jU0jrms ¼
1
V

Z
V
ðu02 þ v 02 þw02Þ;dV

� �1=2

: ð7a;bÞ

With r0,T� r1,T, temperature fluctuations are expected to be several
orders of magnitude smaller than that of the mean temperature.
Here it is assumed that the system is unstable only when tempera-
ture fluctuations grow faster than the mean temperature. With
r1,T > r0,T, temperature fluctuations will grow to a detectable magni-
tude. Therefore, for a given Ra we employ the stability criterion sug-
gested first by Choi et al. [3]:

r1;T ¼ r0;T with r1;V P 0 at s ¼ sc; ð8Þ

which marks the onset condition of intrinsic instability at the earli-
est time sc with the critical dimensionless wavenumber ac. A posi-
tive growth rate of each quantity (r1,T, r1,V > 0) is tolerated as long as
temperature fluctuations are not growing faster than the basic ones
ðr1;T 6 r0;TÞ. If any flow initiated is simply an induced one without

Nomenclature

a dimensionless wave number
A amplitude of temperature fluctuation
B amplitude of velocity fluctuation
g gravitational acceleration [m/s2]
H height of layer [m]
k thermal conductivity [N/s K]
Nu Nusselt number
P pressure [N/m2]
Pr Prandtl number, m/a
r0,T growth rate of mean temperature
r1,T growth rate of temperature fluctuation
r1,V growth rate of velocity fluctuation
q heat flux [N/m s]
Ra Rayleigh number, gbDTH3/(am)
t time [s]
T temperature [K]
u dimensionless velocity vector, UH/a.
U dimensional velocity vector [m/s]

Greek symbols
a thermal diffusivity [m2/s]
b thermal expansion coefficient, 1/K
m kinematic viscosity [m2/s]
D conduction-layer thickness [m]
h dimensionless temperature, (T � Ti)/(Tw � Ti)
q density [kg/m3]
s dimensionless time, ta/H2

Subscripts
c critical state
i initial state
rms root-mean-square quantity
w bottom wall
0 basic state
1 perturbed state
1 fully-developed state
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