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H I G H L I G H T S

� A new modeling approach to the permeability P of 3-phase composite media is presented.
� It consists of our Part II binary model plus a zone between cubic particles and matrix.
� The effect of zone width and permeability on the behavior of P vs composition is studied.
� Coverage of the full composition range is a basic advantage over sphere-based models.
� Previous difficulty to model all types of observed P vs composition behavior is surmounted.
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a b s t r a c t

The simple cubic lattice model of cubic particles A dispersed in a continuous (polymeric) matrix B (and
occupying a volume fraction 0rvAr1 therein), introduced in Parts I and II to establish the meaningful
applicability of the Maxwell and Wiener equations to binary composite-medium permeability properties
up to vA-1, is here applied to modeling the practically important case of a three-phase composite
medium, where the third phase is considered to take the (idealized) form of zones surrounding particles
A which exhibit permeability properties differing substantially from those of the bulk matrix. It is shown,
both theoretically and by application to various existing experimental data, that replacing the spherical
particles, commonly assumed in such modeling, with cubic ones, leads to remarkable gains in model
simplicity and internal consistency, in practical applicability, and ultimately in physical understanding of
the observed variety of 3-phase composite-medium permeability behavior.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the preceding Parts I (Minelli et al., 2013) and II (Papadokostaki
et al., 2015) of this series of papers on binary composite media
consisting of (isometric) particles A dispersed in a continuous matrix
B (and occupying a volume fraction 0rvAr1 of the composite
medium), we showed that a model composite medium based on a
simple cubic lattice of cubic particles A, provides the requisite
theoretical justification for meaningful application of the Maxwell
equation throughout the range 0rvAr1; in contrast to previous
models based on lattices of spherical particles A (Rayleigh, 1892; de
Vries, 1952, etc.), which are limited to the low and medium vA ranges.

In the present paper, we show that the use of cubic, rather than
spherical, particles A is also helpful here, because it leads to a much
simpler and internally fully consistent idealized theoretical treatment
of three-phase composite polymeric media, where a zone in the
polymeric matrix surrounding each particle (B1), exhibiting proper-
ties differing materially from those of the bulk matrix (B), may be
recognized.

In practice, the interphase B1 (i) may be a third substance
introduced deliberately to ensure good adhesion of B to A or (ii) it
may represent some modification of the properties of B, notably as a
result of the tendency of the polymeric material to harden in the
vicinity of A particles (cf., e.g., Berriot et al., 2003). In the latter case,
on which attention will be focused in the present paper, routine
experimental detection of the interphase is not easy and evaluation
of its detailed permeability properties even less so. However, its
presence may reasonably be surmised in many cases where

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ces

Chemical Engineering Science

http://dx.doi.org/10.1016/j.ces.2015.03.069
0009-2509/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ30 210650 3787x3661; fax: þ30 2106511766.
E-mail address: j.petropoulos@inn.demokritos.gr (J.H. Petropoulos).

Chemical Engineering Science 131 (2015) 360–366

www.sciencedirect.com/science/journal/00092509
www.elsevier.com/locate/ces
http://dx.doi.org/10.1016/j.ces.2015.03.069
http://dx.doi.org/10.1016/j.ces.2015.03.069
http://dx.doi.org/10.1016/j.ces.2015.03.069
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ces.2015.03.069&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ces.2015.03.069&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ces.2015.03.069&domain=pdf
mailto:j.petropoulos@inn.demokritos.gr
http://dx.doi.org/10.1016/j.ces.2015.03.069


experimental data are found to deviate markedly from appropriate
standard binary composite-medium formulae.

It is thus important to study theoretically the effect of a B1
zone, characterized by permeability PB1 and width bo, as a function
of these parameters, on the permeability P of a suitable model 3-
phase medium. In this connection, we may note in passing that
certain authors (notably Marand and Surapathi, 2012; Singh et al.,
2013) are inclined to attribute the aforementioned observed
deviations to improper use of the relevant binary formulae as
currently applied; thus relegating the invocation of B1 zones to the
status of a mere convenient modeling device for introduction into
the said standard binary formulae of extra parameters, which can
be suitably manipulated to achieve agreement with the relevant
data. This view is clearly untenable, because, on one hand, it can
be shown beyond doubt (Petropoulos et al., 2014) that current
application of standard binary formulae is correct as it stands. On
the other hand, the physical reality of B1 zones, as idealizations of
measurable polymer hardening effects in the neighborhood of
embedded particles, is well established (e.g. Berriot et al., 2003).

In view of our focus here on the polymer hardening effect [case
(ii)], our model calculations were parameterized very largely with
PB1oPB values. It is important to bear in mind that the model
under consideration is also fully applicable to PB14PB values, such
as may be encountered in case (i), depending on the properties of
the third substance which serves as adhesive and including also
the possibility of the interphase zone appearing simply as a gap,
due to poor adhesion of A to B (see, e.g., Mahajan and Koros,
2002a, 2002b) or to failure of the viscous dope fluid (used to cast
the loaded polymer in the form of a film) to envelop the dispersed
particles fully (Papadokostaki et al., 1998).

It is also worth noting that, in line with our preceding modeling
studies of binary composite media (see Parts I and II; Minelli et al.,
2013 and Papadokostaki et al., 2015, respectively), the s.c. lattice-
of-cubes model presented here may be easily extended for
application to 3-phase composite media consisting of similar
lattices of non-isometric particles (notably square rods and plates).

2. Formulation of simple 3-phase composite medium
modeling

2.1. The general approach

The basic idea underlying the formulation of current simple
3-phase composite medium modeling, first enunciated clearly by
Mahajan and Koros (2002a), is to consider particles A, with their
surrounding zones B1, as pseudo-particles (AþB1) of effective
permeability PE dispersed in the bulk matrix (B); and then proceed
to (i) determine PE by identifying it with that calculated by a
chosen standard formula for a similar binary medium consisting of
A particles dispersed in a matrix of B1, and (ii) apply the same (or
some other) binary formula to the virtual binary composite
material (AþB1, B), the permeability of which (P) should be
identical with that of the 3-phase medium.

This approach of double binary formula application has been
applied extensively by the aforementioned authors and by others
(e.g. Vu et al., 2003; Moore et al., 2004; Moore and Koros, 2005;
Pal, 2008; Shimekit et al., 2011; Hashemifard et al., 2010) to a
variety of gas permeability data. Various binary formulae have
been used for this purpose, wherein Maxwell’s original adoption
of congruent spherical particles is maintained, with the exception
of Hashemifard et al. (2010)’s choice to represent particles A as
congruent short cylinders.

In this respect, preliminary examination of the main binary
formulae currently used for the above purpose is useful.

2.2. Discussion of pertinent binary formulae for particles A dispersed
in a matrix B

The advantage of choosing highly symmetrical hard spherical
particles for Maxwell’s original rigorous derivation of his
equation (shown as Eq. (1)), intended for application at the limit
of infinite dilution (vA-0), is obvious.

P
PB

¼ 1þ 3vA
ðαþ2Þ=ðα�1Þ�vA

ð1Þ

where α¼PA/PB.
However, for practical purposes, it is important to determine

how far the Maxwell (spheres) equation itself or suitable exten-
sions/modifications thereof:

(1) may be usefully employed at higher vAr1, in principle, and
(2) may prove useful for the interpretation of permeability beha-

vior in practice.

At the present stage, we focus attention on point (1). In this
respect, we proceed to review briefly the main post-Maxwell
analytical modeling developments of interest here, which include:

(a) Extension of the Maxwell equation to higher vA by accounting
for interactions between spheres, on the basis of idealized
geometrical models consisting of simple regular cubic lattices
of congruent spheres (Rayleigh, 1892) or of similar b.c.c. or f.c.c.
lattices (de Vries, 1952; see also Petropoulos, 1985), represented
by Eq. (2) below (as formulated by de Vries)

P
PB

¼ 1þ3vA
αþ2
α�1

�vA�
K1 ðα�1Þ v10=3A

αþ4=3
� � þ⋯

 !�1

ð2Þ

where K1¼1.31 (s.c.), 0.129 (b.c.c.) or 0.0752 (f.c.c.).
The range of applicability of such models is necessarily limited
to 0rvArvA,max, where vA,max¼0.524 (s.c.), 0.60 (b.c.c.) or 0.72
(f.c.c.) represents the highest possible degree of packing con-
gruent spheres in each of these regular configurations. It is
noteworthy that the last configuration can justify use of the
simple Maxwell (spheres) equation with error o1% up to quite
high vA values (for examples, see Part II; Papadokostaki et al.,
2015). The above limits can be exceeded, if variability of the size
of the spheres is allowed (cf. the experimental demonstration of
this point quoted by Petropoulos, 1985), but this can be done
only at the expense of undue complication of the model and
ensuing loss of its analytical tractability.

(b) The above vA,max limits are also rendered ineffective by the
Bruggeman (1935) approach, which leads to the implicit
analytical expression

α� P
PB

� �
PB

P

� �1=3

¼ 1�vAð Þ α�1ð Þ ð3Þ

This approach restricts modeling of the spatial arrangement of
the dispersed congruent spheres to that present under the
condition of vA-0 originally envisaged by Maxwell; which
(failing any other pertinent structural postulate) can only be
conceived as a disordered arrangement. In fact, Bruggeman
proceeds to build up his model composite medium gradually,
by starting at vA¼0, adding only a few spheres at each step and
(at the same time) consigning those added previously to “dis-
solution” in a (uniform and continuous) AB “effective medium”

(of composition given by the current value of vA), which
constitutes the environment of the newly added spheres. Thus,
as vA rises, the newly added spheres (too dilute to interact
among themselves) are exposed to interactionwith all previously
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