Author's Accepted Manuscript

Product analysis of methane activation using noble gases in a non-thermal plasma

Sungkwon Jo, Dae Hoon Lee, Young-Hoon Song

www.elsevier.com/locate/ces

PII: S0009-2509(15)00191-8

DOI: http://dx.doi.org/10.1016/j.ces.2015.03.019

Reference: CES12228

To appear in: Chemical Engineering Science

Received date: 8 December 2014 Revised date: 13 February 2015 Accepted date: 11 March 2015

Cite this article as: Sungkwon Jo, Dae Hoon Lee, Young-Hoon Song, Product analysis of methane activation using noble gases in a non-thermal plasma, *Chemical Engineering Science*, http://dx.doi.org/10.1016/j.ces.2015.03.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Product Analysis of Methane Activation using Noble Gases in

a Non-thermal Plasma

Sungkwon Jo, Dae Hoon Lee, Young-Hoon Song

Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon

305-343, Republic of Korea

* Corresponding author: dhlee@kimm.re.kr

As interest grows in methane as a fuel source, its cost-effective activation has become a

topic of intensive investigation. As part of these efforts, methane activation using non-

thermal plasma was investigated in the presence of various noble gas additives, and the

product gases were analyzed. The main products in all cases were alkane species such

as C₂H₆ and C₃H₈, which were produced independently of the noble gas; however, the

conversion of methane was considerably affected by the identity of the noble gas.

Because the formation of carbon was a severe problem even in the presence of the

noble gases, oxidative methane conversion was also evaluated in terms of the carbon

balance and product distribution. By adding oxygen to the methane conversion process,

the formation of carbon could be suppressed but the production of higher hydrocarbons

was also reduced dramatically. Based on these results, it was concluded that the

conversion of methane can be enhanced by varying the discharge characteristics, but

the problem of carbon balance must be solved without the addition of oxygen.

Keywords: Plasma, Methane, Reforming, Dielectric barrier discharge, Noble gas

1. Introduction

1

Download English Version:

https://daneshyari.com/en/article/6589997

Download Persian Version:

https://daneshyari.com/article/6589997

<u>Daneshyari.com</u>