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A U T H O R - H I G H L I G H T S

� We quantify efforts to approach singular points in distillation.
� We propose novel augmented residue curve maps or distillation line maps.
� Emperical findings on the separation effort to remove impurities are confirmed.
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a b s t r a c t

In most distillation problems, the desired products are located at the singular points of the vapor–liquid
equilibrium, i.e. pure components or azeotropes. The effort to approach these points depends on the
specified purity of the product and tends to infinity as the composition approaches that of a pure
component or azeotrope. In the present work, a method to quantify this effort in terms of equilibrium
stages is given. It is shown that there is a constant lower bound on the number of stages required to
decrease the impurity δ of the product by a certain factor b. Further, it is shown that this lower bound is
proportional to the logarithm of c. The results of the method are valid for ideal and non-ideal systems of
any number of components. The information is obtained from the eigenvalues and eigenvectors of the
singular points, no process simulations are needed. We propose adding key figures derived from the
eigenvalues to distillation line/residue curve diagrams to immediately grasp the effort upon approaching
the singular points.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In conceptual separation process design, two questions have to
be answered: First, whether a certain flow sheet is thermodyna-
mically feasible, irrespective of technical limitations. Second, if
such a feasible flow sheet is found, whether the technical require-
ments can be met with an acceptable effort, for which estimates
are needed. This contribution focuses on the second task and add-
resses the number of equilibrium stages needed for separations by
distillation.

Diagrams of distillation lines (discrete, also called c-lines) and
residue curves (continuous) are widely used in conceptual process
design. For a definition, their construction and a survey on the use in
conceptual design the reader is referred to the comprehensive review
of Kiva et al. (2003). Both distillation lines and residue curves originate

and end in singular points of the vapor–liquid equilibrium (VLE)
diagram, either unstable or stable nodes. Further, there may be saddle
points which are singular points passed by distillation lines and
residue curves (Gurikov, 1958). Singular points, and hence possible
nodes or saddles, of the VLE are all pure components and azeotropes
of the system (Haase, 1949). The type of a singular point (stable/
unstable node or saddle) depends on the signs of the eigenvalues of a
matrix derived from the differential equations that describe the
residue curves. This was already shown by Russian researchers around
Zharov and Serafimov in the late 1960s (Kiva et al., 2003).

The VLE and the topology of the dynamical system described by
the residue curve equations determine the location and type of the
singular points which are the basis of conceptual process design.
A large number of methods which use distillation line and residue
curve maps are available to determine the feasibility of a distillation
column or the minimum reflux ratio of a column. They are usually
based on the limiting cases of an infinite number of equilibrium stages
(simply “stages” in the following) and/or total reflux. The minimum
reflux ratio, and thus minimum energy demand, is obtained for an
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infinite number of stages (Underwood, 1948; Widagdo and Seider,
1996). Thereby, pinches play a crucial role. Composition pinches are
found at column cross-sections where vapor and liquid are in
equilibrium, so that a concentration driving force is absent and
the column composition profile is unchanging from stage to stage.
Studies of the properties of pinches and their loci (pinch curves) in
ternary diagrams led to a number of methods to determine
minimum reflux ratios for given product specifications, e.g. the
boundary value method (Levy et al., 1985), an eigenvector method
(Poellmann et al., 1994), the rectification body method (Bausa et al.,
1998) or the method of the shortest stripping line (Lucia et al., 2006,
2008). Two ideas among these approaches are of direct relevance to
this work. Firstly, Poellmann et al. (1994) linearized the VLE around
the pinch point and used eigenvalue theory to calculate volumes
inside which the column profiles have to approach the pinch points.
As their motivation was different, they did not give measures of
how fast the profiles approach the pinch points. This work will
finally provide these measures. Secondly, Lucia et al. (2006, 2008)
found that the length of the stripping section's profile (defined
using the 2-norm in the concentration space) correlates with the
energy demand of the column. For the minimum length of this
profile, the energy demand (and hence the reflux ratio) of the
column is minimized. When approaching the singular points of the
VLE, the length of the profile does however not change significantly.
Thus, this is an insensitive measure to quantify the separation effort
to approach the singular points. This work provides the required
measure in terms of the number of stages.

In continuous distillation, the minimum number of stages to meet
given product specifications is obtained at total reflux (Stichlmair and
Herguijuela, 1992; Widagdo and Seider, 1996). In this case, the profile
of the column in the ternary diagram equals a segment of the
distillation line connecting both column products (Kiva et al., 2003).
The number of vertices of the segment, usually determined by tray-
to-tray calculations, equals the number of stages (Stichlmair and Fair,
1998). Thus, the distillation lines provide a direct measure for the
difficulty of the separation: the larger the distance (measured by the
2-norm) from stage to stage in the concentration space, the easier
the separation (Stichlmair, 1988).

Of particular practical interest are column products in close
vicinity of pure components or azeotropic points, thus in vicinity of
the singular points of the VLE. In real columns, the singular points
cannot be obtained as column products since an infinite number of
stages would be required (even with total reflux provided). While
the remainder of the introduction concerns the separation effort for
approaching a node singular point, the proposed method is also
applicable for separations in which the profile at total reflux and
infinite number of stages passes through a saddle. This case is dis-
cussed in more detail in the main text.

Consider a distillation column in which one desired product is a
pure component which is a node of the VLE diagram and the total
amount of impurities δ is specified. Upon decreasing δ the effort
for the separation (expressed in terms of number of stages at total
reflux) will increase, with the number of stages approaching
infinity as δ tends to 0. In the present work, a method to assess
that effort without having to carry out process simulations is
described. As the analysis underlying the method is based on
distillation line/residue curve diagrams, the case of total reflux is
considered, and the separation effort is expressed in terms of the
required number of stages. Any number of stages given in the
present work is therefore a lower bound to the number of stages
which would be required for a corresponding separation at finite
reflux ratio, i.e. a separation in a real distillation column.

Assume that two design options for the above column with
different specifications on δ are given, e.g. δspec;1 ¼ 0:01 mol=mol
and δspec;2 ¼ 0:001 mol=mol. Clearly, additional stages are required
to achieve the lower impurity specification δspec;2. We are interested

in quantifying that increase in the number of stages and therefore
only consider the transition from points with δ¼ δspec;1 to those
with δ¼ δspec;2 which lie on the same distillation line or residue
curve. The number of stages required for such a transition in the
vicinity of a singular point can be obtained from an analysis of the
eigenvectors and eigenvalues of the singular point. It is shown
that a logarithmic relation exists between the ratio δspec;1=δspec;2 of
the impurities and the number of stages N required to achieve the
desired step in purity, which is of the type lnðδspec;1=δspec;2Þ ¼ cN. In
the literature, this logarithmic dependency was analytically derived
for the special cases of systems of constant relative volatilities
(Fenske, 1932; Cao et al., 2012) but, to the best of our knowledge,
not in a general way. Further, such a logarithmic dependency was
found empirically through simulations and experiments for non-
ideal systems (Burger and Hasse, 2013; Eduljee, 1975). This work
analytically derives the logarithmic dependency for the general case
of non-ideal systems. The factor c depends on the eigenvalues of the
singular point which is approached and the direction from which it
is approached. The eigenvalues and eigenvectors of the singular
points, as well as the value of c can be readily calculated from the
thermodynamic VLE model without tray-to-tray calculations.

The paper is organized as follows. The next section is devoted to
the mathematical derivation of a lower bound on the number of
stages required to change the impurities of column products. In
Section 3 the practical use of the calculated information is demon-
strated. In Section 4 an augmented diagram of distillation lines is
suggested which contains information about separation complexity.

2. Methodology

2.1. Basic definitions

The prescription to calculate distillation lines is as follows (Kiva
et al., 2003):

xðnþ1Þ ¼ y xðnÞ
� � ð1Þ

starting from any point xð0Þ in the composition space. The vector
xARNC denotes the liquid phase composition (mole fractions) in a
system of NC components. The vector function

y¼ yðxÞ; yARNC ð2Þ
maps x to the composition y of the vapor phase in equilibrium
with x.

Whereas the stage index n in Eq. (1) is discrete, residue curves
are described by in terms of a continuous parameter τ (Van
Dongen and Doherty, 1985):

dxi
dτ

¼ yi�xi; i¼ 1;…; ðNC�1Þ; ð3Þ

where in this context, one can think of τ as a measure of the
normalized column height. The solutions of these differential
equations are called residue curves. In this work, we assume total
reflux of the column. In this case the pinch points of the column,
denoted xP , are equal to the stationary or singular points of Eq. (1).
They are the common singular points of (1) and (3) given by

xP ¼ yðxPÞ: ð4Þ
A singular point is either a pure component or an azeotrope, and is
either an unstable node, a stable node or a saddle. Its type is
defined by the eigenvalues of the matrix A on the right side of (3)
at the singular point P which involves the Jacobi matrix with
negative sign as follows:

Aij≔1ij�
∂yi
∂xj

����
P

; i; j¼ 1;…; ðNC�1Þ: ð5Þ
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