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H I G H L I G H T S

� Behavior of a single liquid drop in
simple shear flow at Re¼10 is stu-
died.

� Numerical simulations are per-
formed using a free energy lattice
Boltzmann method.

� New results for drops that are less
viscous than surrounding liquid.

� For each viscosity ratio the critical
capillary number Cac is determined.

� Drop breakup processes are exam-
ined at Ca� Cac , 1.2Cac, 1.5Cac and
2Cac.
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a b s t r a c t

The deformation and breakup of a single liquid drop subjected to simple shear flow is studied
numerically using a diffuse interface free energy lattice Boltzmann method. The effect of dispersed
phase viscosity on the behavior of the drop at a drop Reynolds number Re¼10 is investigated over the
range of viscosity ratios λ¼ 0:1�2 (dispersed phase viscosity over continuous phase viscosity) with a
focus on λo1. For every λ the critical capillary number Cac for breakup is determined. For the range of λ
considered, Cac decreases as λ increases. Both the extent of deformation and the breakup mechanism
depend on the viscosity ratio and the capillary number. At the highest subcritical capillary number, the
drop becomes less elongated and more inclined towards the vertical axis as the viscosity ratio increases.
The changes in the drop breakup process are examined as the capillary number increases from the
lowest supercritical Ca� Cac, to 1.2, 1.5 and 2Cac. Drops break by the end-pinching mechanism, except
for λ¼2 at Ca¼ 2Cac where the drop undergoes capillary wave breakup.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Studies of drop behavior in simple flow geometries have been
used to interpret data on dispersion and emulsion formation due
to more complex flow structures as they occur in process equip-
ment (Rueger and Calabrese, 2013). While most experimental and

simulation research has considered creeping flow (Grace, 1982;
Rumscheidt and Mason, 1961; Stone, 1994; Rallison, 1984; Zhao,
2007; Marks, 1998), drops in complex flows, such as turbulence,
can experience drop Reynolds numbers anywhere in the range
0.01–100 (Komrakova et al., 2014). To predict whether drops will
break in turbulent flow, it is therefore necessary to understand
how the conditions for breakup at moderate Reynolds numbers
differ from those in creeping flow. While studies have considered
the conditions for breakup in simple shear flow at Reynolds
numbers up to 100 in systems with droplets that are as viscous
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or more viscous than the continuous phase (Renardy and Cristini,
2001a; Khismatullin et al., 2003), neither experiments nor simula-
tions have been reported for the case of drops that are less viscous
than their surroundings. This case is not unusual: for example,
water droplets may be dispersed in a much more viscous oil
(Rueger and Calabrese, 2013; Boxall et al., 2011). In the oil recovery
industry, well productivity can be reduced by formation damages
caused by oil-based emulsions that contain brine droplets (Fjelde,
2007). If a monodisperse emulsion is formed, then damage might
occur even at low dispersed phase volume fractions. An under-
standing of deformation and breakup behavior of low-viscosity
drops in a more viscous fluid will therefore fill an important gap in
current knowledge with impact on industrial applications.

In the present work, the deformation and breakup of a single
drop suspended in another liquid under simple shear flow is
studied with numerical simulations using a free energy lattice
Boltzmann method (Swift et al., 1996). The details of the method,
its verification and validation can be found in Komrakova et al.
(2014). Both liquids are Newtonian and of the same density. There
are no surfactants or impurities in the system. The physical
problem is determined by three dimensionless numbers: the drop
Reynolds number Re¼ _γa2=νc , the capillary number Ca¼ a _γμc=σ,
and the viscosity ratio λ¼ μd=μc . Here, a is the undeformed
drop radius; _γ is the shear rate; νc is the kinematic viscosity of
the continuous phase; μc, μd are the dynamic viscosities of the
continuous and dispersed phases, respectively; and σ is the
interfacial tension between the liquids.

The goal of this study is to investigate the behavior of a drop at a
fixed Reynolds number Re¼10 over a range of viscosity ratios
λ¼ 0:1�2, with a focus on λo1. For each λ it is necessary to
determine the critical capillary number Cac that must be exceeded
to break a drop. At subcritical capillary numbers, the drop achieves
a steady final shape. The internal circulation patterns and the
deformation parameters (elongation and orientation angle; see
definitions below) are used to characterize the steady shape. When
a supercritical capillary number is simulated, the drop breaks, and
the breakup mechanism depends on the values of Ca and λ. Changes
in the drop breakup process are examined as the capillary number
increases from 20% above critical, to 50 and 100%.

The distinct characteristic of numerical simulations is that the
entire deformation and breakup processes can be visualized revealing
peculiarities of the events. However, in order to study physical
processes numerically, it is necessary to select numerical parameters
that produce trustworthy physical results. It was shown by Komrakova
et al. (2014) that in addition to the three physical dimensionless
numbers mentioned above (the Reynolds number, the capillary
number and the viscosity ratio), two numerical dimensionless num-
bers have to be specified. In the diffuse interface method, which is
used in this work, the finite thickness of the interface between the two
liquids and related free energy model parameters are involved. These

numerical degrees of freedom are characterized by two dimensionless
numbers (van der Sman and van der Graaf, 2008): the interface Peclet
number Pe and the Cahn number Ch. The interface Peclet number
Pe¼ _γaξ=ðMAÞ relates the convection time scale to the interface
diffusion time scale. The Cahn number Ch¼ ξ=a is the ratio of the
interface thickness and drop radius. Here, ξ is the interface thickness,
M is the mobility, and A is a free energy model parameter. In the
present study, the guidelines as developed by Komrakova et al. (2014)
have been applied to specify Pe and Ch.

The rest of the paper is organized as follows. In Section 2 a brief
description of the numerical method and its implementation are
presented. In Section 3 the ability of the method to compute flows
over the required range of viscosity ratios is demonstrated. The
results of drop deformation and breakup are presented in Section 4.
Conclusions are drawn in Section 5.

2. Numerical method and its implementation

The behavior of a drop in shear flow is studied numerically
with the diffuse interface free energy lattice Boltzmann method
(LBM) developed by Swift et al. (1996). The details of diffuse
interface (or phase field) methods can be found in Jacqmin (1999),
Yue et al. (2004), and Ding et al. (2007); our implementation of the
method is presented in Komrakova et al. (2014). In particular, the
interface between the two components is represented by a thin
transition region with a finite thickness in which the composition
varies smoothly. The composition of the system is described by the
order parameter ϕ which is the relative concentration of the two
components (Cahn and Hilliard, 1958; Penrose and Fife, 1990;
Badalassi et al., 2003). To simulate the fluid dynamics of the binary
mixture, the continuity and momentum equations are solved in
conjunction with the convection–diffusion equation for the order
parameter proposed by Cahn and Hilliard (1958, 1959). Thus, the
evolution of density, velocity and order parameter are governed by
the continuity, momentum, and convection–diffusion equations
(Swift et al., 1996):

∂tρþ∂αðρuαÞ ¼ 0 ð1aÞ

∂tðρuαÞþ∂βðρuαuβÞ ¼ �∂βP
th
αβþ∂βν ρ∂αuβþρ∂βuα

� �
ð1bÞ

∂tϕþ∂αðϕuαÞ ¼M∂2ββμ ð1cÞ

where uα is the velocity; the index α stands for the Cartesian
directions x, y and z; ρ and ν are the density and the kinematic
viscosity of the mixture, respectively. Here Pth

αβ is the ‘thermodynamic’
pressure tensor. It contains two parts (Kendon et al., 2001): an
isotropic contribution Pδαβ that represents the ideal gas pressure
and the ‘chemical’ pressure tensor Pchem

αβ . The chemical potential in
Eq. (1c) is μðϕÞ ¼ Aϕ�Aϕ3�κ∂2ααϕ. Here, Ao0 and κ are parameters

Fig. 1. Simulation domain with the following boundary conditions: x¼0 and x¼ Ld
are periodic boundaries; y¼0 has a rotational symmetry boundary condition; y¼H
is a no-slip wall moving with constant velocity uw; z¼0 and z¼ �W are symmetry
planes. At t¼0 the drop has a spherical shape with initial radius a. Due to the
symmetry of the problem only one quarter of the domain needed to be simulated.

Fig. 2. A slice of the simulation domain at z¼0 for validation simulations of
stratified shear flow; h¼64 [lu], H¼ 4 h, λ¼ μd=μc ¼ 0:1�2.
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