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H I G H L I G H T S

� GP model is used to model the spatiotemporal process with the assistance of KL decomposition.
� The process outputs are predicted along with the uncertainty of the spatiotemporal process.
� Active data are selected automatically based on the variance to enhance the model.
� The KL–GP model is updated recursively when new information is added.
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a b s t r a c t

Modeling a nonlinear distributed parameter system (DPS) is difficult because it is usually hard to obtain
the first-principle models in DPS with strong spatiotemporal characteristics. In this paper, a novel data-
driven model, called KL–GP, is proposed based on Karhunen–Loève (KL) decomposition and Gaussian
process (GP) models. First, KL decomposition is employed for the time/space separation and dimension
reduction. The spatiotemporal output is projected onto a low-dimensional KL space. Subsequently, GP
models are used to build the temporal system relationships. Thus, the nonlinear spatiotemporal
dynamics can be reconstructed after the time/space synthesis. The advantage of the proposed model
is that KL–GP provides the predictive distribution of the outputs and the estimate of the variance of its
predicted outputs. The “active data” in the DPS region can be found for model improvement according to
the predicted variances. Then the developed self-active KL–GP model is extended to include adaptation
and on-line implementation in real time. Systematic design procedures are needed so that the DPS
modeling problems can be solved because there are no guidelines to define the architecture needed for
evolution in the traditional method. This is particularly good when reducing the computational demand
of the DPS model. Simulation results of DPS are presented to demonstrate the effectiveness of the self-
active KL–GP modeling method and the recursively selective KL–GP modeling method.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Distributed parameter system (DPS) exists in many industry
processes. DPS is distinguished by the fact that its states or
variables are non-uniform in the space. The dynamics of this kind
of system at particular spatial location and time are not only
relevant to the previous system states, but also with other spatial
locations. The coupling of time and space and infinite dimension-
ality makes them very difficult to analyze. However, for system

prediction and controller design, the models of these spatiotem-
poral systems are always necessary.

The standard form of the spatiotemporal systems is the partial
differential equations (PDEs) according to the mechanism of the
physical, chemical or biological processes. This kind of model can
predict the spatiotemporal outputs of the system accurately if the
knowledge is good enough, while the infinite dimensional PDEs
models which are used directly are not practical because of the
practically limited sensors and computing power. In practice, finite
dimensional models are usually used to approximate DPS. Li and
Qi (2010) gave a review about spatiotemporal separating modeling
methods of DPS. Several numerical solving methods have been
developed to solve PDEs, including the finite elements method
(Brenner and Scott, 2008), the finite difference method (Mitchell
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and Griffiths, 1980), the Galerkin method (Balas, 1983; Fletcher,
1984), the approximate inertial manifold method (Christofides and
Daoutidis, 1997; Foias et al., 1988) etc. Some of the local solving
approaches assume that the output at the specific locations is only
determined by its neighboring locations and itself. The local
models can be established using local data based on the lattice
dynamical system (Guo and Billings, 2007; Mandelj et al., 2001).
But how to determine the neighborhood is always difficult or
uncertain. On the other hand, the global approaches utilize a set of
global basis functions to express the DPS information. While
different basis functions would impact the accuracy of modeling,
such as Fourier series (Deng et al., 2005) and various kinds of
polynomials (Boyd, 2001; Hussaini and Zang, 1987), these func-
tions are not optimal and they do not vary with the real process.

Besides, establishing PDE models is relatively hard because the
knowledge of the systems is usually insufficient. Thus, data-driven
approaches are used in practice. Although traditional data-driven
system identification methods for lumped parameter systems have
been widely developed, modeling the spatiotemporal system is
still in the infant stage of development. Known as proper ortho-
gonal decomposition, Karhunen–Loève (KL) decomposition (Li and
Qi, 2010) is a popular approach to finding the principal spatial
structures. KL decomposition is a data-driven method which
chooses a principal spatial structure of global basis functions.
Moreover, these basis functions are orthogonal (Newman, 1996;
Sirovich, 1987), which would make modeling more efficient. In this
method, the spatial-temporal variables can be represented by
infinite spatial basis functions ϕn sð Þ� �1

n ¼ 1 and the corresponding
temporal coefficients yn tð Þ� �1

n ¼ 1, where ϕn sð Þ� �1
n ¼ 1 obtained by

KL decomposition are orthogonal with each other (Newman, 1996;
Sirovich, 1987). In fact, a finite number of spatial basis functions
are able to provide a good approximation for most industrial
processes. By utilizing this feature, only few low-dimensional
temporal models are needed to be established. After the proper
spatial basis functions are designed, temporal variables can be
obtained by projecting the process data on these basis functions.
To model the temporal dynamics, many traditional modeling
methods have been proposed, such as the Hammerstein model
(Qi and Li, 2009b), neural network model (Qi and Li, 2009a; Sahan
et al., 1997), support vector machine (Qi et al., 2010). However, the
above prediction models supply a scalar prediction only at any
sampling point without any measure of the confidence in that
prediction, because these models do not take into account the
uncertainty of the model structure. Also, once the models are
identified, one does not know how to measure the current model
quality or how to select the valuable data to improve the
trained model.

For the above problems, Gaussian process (GP) models are
ideally suitable. They were developed in system modeling decades
ago (Williams and Barber, 1998), though they actually have a long
history in geostatistics (Cressie and Wikle, 2011; Finley et al., 2012)
known as “kriging”. GP models have been increasingly used in
nonlinear dynamic systems (Grancharova et al., 2008; Holsclaw et
al., 2013), because of their capability of providing the uncertainties
of the predictive outputs, as well as the relatively less number of
optimizing parameters (Ažman and Kocijan, 2007, 2011). Recently,
nonlinear curve regression using GP models has aroused more
interest (Holsclaw et al., 2013) and been compared with other
commonly used models. The GP models had been applied to
nonlinear dynamic system modeling (Deisenroth et al., 2009;
Gregorčič and Lightbody, 2008, 2009), biological processes (Gao
et al., 2008), spectroscopic calibration (Chen and Wang, 2010), and
particle dynamics (Hernandez and Grover, 2010). In practical
process modeling, models are usually constructed offline before
being applied to online processes. Whether the trained models are
healthy and the predictions are reliable is crucial for process audit,

advanced automatic control, and real-time optimization purposes.
The performance improvement is influenced by the accuracy of
the model. Unlike the conventional models, GP models are valu-
able because they provide the predictive variance of the predicted
output. This means that if the predictive distribution is tightly
packed, the confidence level of the model prediction is high; on
the contrary, the prediction distribution over a wide range of
values indicates that the model is highly uncertain.

In this work, the KL–GP model for DPS is proposed. KL
decomposition is employed for separating the spatiotemporal
DPSs to get the optimal basis functions and make the calculation
easier. The GP models are established for the temporal dynamic
model based on the temporal variables which are obtained by
projecting process data onto the basis functions. The spatial-
temporal output predictions along with their variance can be
computed after the time/space synthesis of the spatial basis
functions and the temporal predictions. Furthermore, for the
real-time applications, based on the predictive variance at each
time point and space locations, non-redundant data would be
selected when the GP models are updated. In this research, the
self-active (SA) data based KL–GP, called SA–KL–GP, is proposed.
With the newly selected data, while KL–GP is retrained, it is by its
very nature an off-line training (i.e., all the data are gathered and
processed.) The calculations are repeated for increasingly more
data, but the computation can become prohibitive because the
computation of the kernel matrix decomposition is time-
consuming and the dimensions of kernel matrix depend on the
number of the collected data. Many recursive KL approaches had
been proposed (Golub, 1973; Hall et al., 2002; Parlett, 1980), but
none of them select the principal basis functions adaptively.
In addition, the optimization of the GP model parameters is more
time-consuming because of the supervised maximum likelihood
approach. Although recursive GP training methods were studied
(Ni et al., 2011, 2012), they are not exactly suitable for our
structure. In this research, the extension of our recursive update
of GP (Chan et al., 2013) to a recursive version of the KL–GP
training model based on the active data, called recursively selec-
tive KL–GP (RS–KL–GP), is developed. It allows us to update the
parameters of KL–GP when an active data pair is selected without
using all the sampled data in the computation and without re-
computing the kernel matrix and retraining GP. Thus, when
applied to a given DPS, the objectives of the RS–KL–GP model
formalism are to provide dynamic model architecture for on-line
applications (more specifically, dynamic architecture means the
model can self-adjust the number of spatial basis functions and
update the GP parameters based on the selected active data in the
changes of the process behavior).

The rest of this paper is organized as follows: In Section 2, a
brief review of the preliminary knowledge of KL decomposition
and GP models is given; then the KL–GP model is derived. The self-
active data based KL–GP model is proposed in Section 3. Section 4
investigates how the adaptive technique is incorporated into the
KL–GP model for on-line recursive identification. In each of these
three sections, the same simulation problem is used to demon-
strate the effectiveness of the proposed modeling method and to
explain the features with the improved KL–GPmodel from Section 2
to Section 4. And finally conclusions are drawn in Section 5.

2. KL–GP model

Considering a nonlinear spatiotemporal process, the temporal
input is x tð ÞARD and the spatiotemporal output is Y s; tð ÞAR, where
D indicates the number of inputs of the spatiotemporal process,
sAΩ is the spatial variable, Ω is the spatial domain, and t is the
temporal variable. The spatiotemporal variable Y s; tð Þ is distributed
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