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H I G H L I G H T S

� An analysis of two-dimensional (2D) LKM for liquid chromatography is presented.
� The developed analytical solutions extended the solutions for 2D-EDM.
� The finite Hankel and Laplace transforms are jointly applied to solve the model.
� The solutions quantify the influence of solute transport in radial direction.
� For further analyses, temporal moments are derived.
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a b s t r a c t

This paper presents a set of semi-analytical solutions and analytical moments for two-dimensional
lumped kinetic model (LKM) describing non-equilibrium solute transport through a chromatographic
column of cylindrical geometry. General solutions are derived for the solute concentration by successive
implementation of finite Hankel and Laplace transforms assuming different sets of boundary conditions
and linear sorption kinetic process. For further analysis, statistical temporal moments are derived from
the Laplace transformed solutions. The current solutions extend and generalize the recent solutions of
two-dimensional equilibrium dispersive transport model (EDM). Typical examples of concentration
profiles and moments resulting from different sets of initial and inlet conditions are presented and
briefly discussed. The derived semi-analytical solutions for concentration profiles and analytical
moments are validated against the numerical results of a high resolution finite volume scheme. Good
agreements in the results verify the correctness of analytical solutions and accuracy of the proposed
numerical algorithm.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The influence of axial and radial mass transfer kinetics in a
cylindrical chromatographic column on the elution profile of a pulse
of a mixture and on the degree of resolution achieved between the
bands of different components is a fundamental problem in pre-
parative chromatography. Chromatographic processes provide a
powerful tool for the separation of multicomponent mixtures in
which the components have different adsorption affinities, especially
when the components show separation factors near one and high
resolutions, yields and purities are required. Typical applications are

found in the pharmaceutical and food industries where standard
thermal unit operations like distillation are not suitable. Chromato-
graphy technology has received considerable attention during the
last few decades. More advances have been made in this process by
frequently improving their performances for the separation of more
composite mixtures, see Guiochon (2002), Guiochon and Lin (2003),
Guiochon et al. (2006), and Ruthven (1984).

Mathematical modeling is an essential part of the chromato-
graphic theory for describing its dynamical process. It provides a
procedure for predicting the dynamical behavior of solute in the
column without extensive experiments. Due to different considera-
tions of simplifications, several types of models have been estab-
lished and applied to illustrate the behavior of chromatographic
columns. These include the general rate models, the lumped kinetic
model, the linear driving force models, the linear models, and
the equilibrium dispersive models, see e.g. Carta (1988), Guiochon
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(2002), Guiochon and Lin (2003), Guiochon et al. (2006) and
Ruthven (1984). All these models need an important input informa-
tion regarding the thermodynamic equilibrium of the distribution
of the components between the mobile and stationary phases.
These models are categorized as non-equilibrium and equilibrium
transport models. In the equilibrium models sorption is presumed
to be instantaneous, while sorption in the non-equilibrium models
is thought to be governed by first-order kinetics, see Guiochon
(2002), Guiochon et al. (2006), and Ruthven (1984). Generally, only
the most relevant concentration gradients occurring along the
column axis are considered within the one-dimensional (1D)
models. Gradients along the radial coordinate of the columns
requiring the solution of two-dimensional (2D) models are typically
neglected.

A number of analytical solutions for one-, two- and three-
dimensional advection–dispersion equations (ADEs) have been
developed for predicting the transport of various contaminants
in the subsurface. For example van Genuchten and Alves (1982)
formulated several analytical solutions of the one-dimensional
ADE subject to various initial and boundary conditions. Batu (1989,
1993) and Coimbra et al. (2003) presented analytical solutions of
the two-dimensional ADE with various source boundary condi-
tions. Leij et al. (1991) and Park and Zhan (2001) derived analytical
solutions for three-dimensional ADE. However, these models were
mostly limited to ADEs in Cartesian coordinates with steady
uniform flow, see e.g. Park and Zhan (2001). Analytical solutions
for two-dimensional ADEs in cylindrical coordinates are particu-
larly useful for analyzing problems of the two-dimensional solute
transport in a porous medium system with steady uniform flow,
see for example Chen et al. (2011a,b), Massabò et al. (2011), Massabó
et al. (2006), Park and Zhan (2001), and Zhang et al. (2006).

Analytical solutions of the models for column chromatography
are possible when mass transfer processes are represented by linear
relationships, see e.g. Carta (1988), Guiochon et al. (2006), Javeed
et al. (2013), Li et al. (2003a,b), Li et al. (2011), and Qamar et al.
(2013). Although with the increased computational power of digital
computers and with the availability of accurate of numerical
algorithms, analytical solutions have lost some of their importance,
they still generally present the very significant advantage of
providing greater insight into the operation of the process and
can be more easily implemented as a routine design tool. These
solutions help tremendously to understand and analyze, without
extensive experiments, the dynamics of concentration fronts mov-
ing through chromatographic columns. The availability of such
solutions further provides useful tools to determine free transport
parameters of the corresponding models. Finally, the solutions are
most helpful for the validation of numerical methods needed to
solve more general cases.

Moment analysis is known to be an effective method for deducing
important information about the retention equilibrium and mass
transfer kinetics in a chromatographic column. Provided analytical
solutions of the column mass balances are available, condensed
information in the form of moments of the outlet profiles can be
easily obtained. Moment analysis has been comprehensively dis-
cussed in the literature, see for instance Antos et al. (2003), Guiochon
et al. (2006), Kubin (1965a,b), Kucera (1965), Lenhoff (1987), Miyabe
and Guiochon (2000, 2003), Miyabe (2007, 2009), Ruthven (1984),
Schneider and Smith (1968), Suzuki (1973), andWolff et al. (1980a,b).
Recently, Javeed et al. (2013) and Qamar et al. (2013, 2014) used
the Laplace transformation to derive analytical solutions of one-
dimensional EDM, LKM and GRMmodels. Moreover, the authors also
derived the moments of Laplace transformed solutions for different
sets of boundary conditions (BCs).

This manuscript extends and generalizes our recent solutions
for two-dimensional EDM to the solutions of two-dimensional
LKM describing non-equilibrium solute transport through a

chromatographic column of cylindrical geometry, see Qamar
et al. (2014). General solutions are derived for the solute concen-
tration by applying finite Hankel transform together with Laplace
transform, see e.g. Carslaw and Jaeger (1953); Crank (1975), Chen
et al. (2011a,b), and Qamar et al. (2014). The finite Hankel trans-
form technique is utilized to eliminate the radial coordinate,
followed by the application of the Laplace transform to solve the
resulting partial differential equations assuming both Dirichlet and
Robin (Danckwerts) inlet boundary conditions (BCs) and linear
sorption kinetic process. For further analysis, statistical temporal
moments are derived from the Laplace transformed solutions, see
e.g. Qamar et al. (2013, 2014). Typical examples of concentration
profiles and moments resulting from different sets of initial and
inlet conditions are presented and briefly discussed. The derived
semi-analytical solutions for concentration profiles and analytical
temporal moments are validated against the numerical results of a
high resolution finite volume scheme, see Javeed et al. (2011).
Good agreements in the results verify the correctness of analytical
solutions and accuracy of the proposed numerical algorithm.

2. Mathematical model

The chromatographic process involves complex hydrodynamic,
thermodynamic, and kinetic phenomena, which often interact. In
the simple EDM only one parameter is used to describe band
broadening phenomena. In reality, many influential contributions
take place simultaneously during migration of the solute. It is
often impossible to identify one single contribution as rate
determining. The LKM incorporates the rate of variation of the
local concentration of solute in the stationary phase and back-
mixing in the column due to dispersion. The model lumps hereby
the contribution of internal and external mass transport resis-
tances into a mass transfer coefficient denoted by k.

This study considers the non-equilibrium transport of a solute
in a two-dimensional chromatographic column of radial geometry
as illustrated schematically in Fig. 1. The injected solute migrates
in the z-direction by advection and axial dispersion, whereas it
spreads in the r-direction by radial dispersion. We consider the
flow rate variation of the local solute concentration and it is
assumed that the adsorption isotherm is linear with a Henry
constant a. To trigger and amplify the effect of possible rate
limitations of the mass transfer in the radial direction, the
following specific injection conditions are assumed. By introdu-
cing a parameter ~r the inlet cross section of the column is divided
into an inner cylindrical core and an outer annular ring (see Fig. 1).
The injection profile is formulated in a general way allowing for
injection either through an inner core, an outer ring or through the
whole cross section. The latter case results if ~r is set equal to the
radius of the column denoted by R. Since in the latter case no
initial radial gradients are provided, the solutions should converge
into the solution of the simpler one-dimensional model, see Javeed
et al. (2013).

Based on the above setup, the governing equations of a two-
dimensional linear LKM for a fixed bed chromatography column

Fig. 1. Schematic representation of a chromatographic column of cylindrical
geometry. It is assumed that solute can be injected either through inner cylindrical
core or through outer annular ring.
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