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H I G H L I G H T S

� The diffusion-free RTD of fully devel-
oped laminar flow is studied analy-
tically.

� A general relation for computing the
RTD of a given 1D velocity profile is
derived.

� The relation applies to straight pla-
nar and axisymmetric channels.

� The theory is unifying and comprises
all pure convection RTDs derived
so far.

� The theory is used to derive the RTD
of general plane Couette–
Poiseuille flow.
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a b s t r a c t

In literature, the diffusion-free residence time distribution (RTD) of laminar flows – the so-called
convection model – has been determined for various velocity profiles mostly on a case-by-case basis.
In this analytical paper, we derive general mathematical relations which allow computing the diffusion-
free differential and cumulative RTD in straight planar, circular and concentric annular channels for
arbitrary monotonic and piece-wise monotonic one-dimensional velocity profiles. The theory is used to
determine the RTD of plane Couette–Poiseuille flow with non-monotonic velocity profile, and the
optimal value of the volumetric flow rate where the RTD becomes most narrow. It is shown that any
velocity profile that depends in a sub-layer linearly on the distance from a stationary or moving no-slip
wall has a differential RTD which follows a �3 power law as the residence time approaches its
maximum. The variance of the RTD is directly associated with the asymptotic behavior of the RTD and
can be finite or infinite.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Reactors with laminar flow are frequently used for processing
viscous fluids such as liquid food products (Torres and Oliveira,
1998) or polymers (Gogos et al., 1987), and in micro-process
engineering (Kockmann, 2006). Recent progress in microfluidic

technology has turned attention to the residence time distribution
(RTD) in micro-devices (Cantu-Perez et al., 2010; Lohse et al.,
2008; Vikhansky, 2011; Wibel et al., 2013). The velocity profile of
laminar flow causes fluid elements to spent different times within
the reactor and gives rise to a wide RTD. In the pure convection
regime, molecular diffusion is negligible and each fluid element
follows its streamline with no intermixing with neighboring
elements. This corresponds to ‘macrofluid behavior’ so that the
average conversion can be predicted by the total segregation
model (Danckwerts, 1958; Fogler, 1986; Zwietering, 1959).
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This model assumes that fluid elements having the same age
(residence time) ‘travel together’ in the reactor and do not mix
with elements of different ages until they exit the reactor (Madeira
et al., 2006). Levenspiel (1999) provides a map which recommends
using the pure convection model for situations, where the Boden-
stein number is sufficiently large while the ratio between channel
length and diameter is sufficiently low.

In this paper we are interested in the RTD of this pure convective
regime for general laminar flows. Throughout the paper we assume
that the ratio of the length to the hydraulic diameter of the channel
is sufficiently long so that entrance effects can be ignored; for a
discussion of entrance effects on the RTD we refer to Ham et al.
(2011). Under these conditions, the cumulative RTD, FðθÞ, and the
non-dimensional differential RTD, EθðθÞ ¼ dFðθÞ=dθ, depend on the
fully developed velocity profile only and are fully deterministic.
Closed analytical forms of the diffusion-free RTD in laminar flows
are known only for very few channel shapes and certain Newtonian,
non-Newtonian or generalized velocity profiles, see Table 1. Exam-
ples are axisymmetric flows in a circular pipe (Bosworth, 1948;
Danckwerts, 1953; Delaplace et al., 2008; Hsu and Wei, 2005;
Osborne, 1975; Pegoraro et al., 2012; Sawinsky and Balint, 1984;
Sawinsky and Deak, 1995; Wein and Ulbrecht, 1972; Zakharov,
2006), in a planar channel (Asbjornsen, 1961; Levenspiel et al.,
1970; Sawinsky and Simandi, 1983; Zakharov, 2006) and in a
concentric annulus (Nigam and Vasudeva, 1976). In all these cases
the velocity profile is one-dimensional as it depends on one co-
ordinate only. For fully developed two-dimensional laminar flows,
the diffusion-free RTD has been obtained approximately for heli-
cally coiled tubes (Nauman, 1977) and rectangular channels
(Wörner, 2010), and analytically exact for channels with moon-
shaped cross-section (Erdogan and Wörner, 2013).

The mathematical procedure to compute the RTD from the
given laminar velocity profile is always similar. However, it has
been applied mostly in a case-by-case manner. While Wein and
Ulbrecht (1972) and Nauman (1974) derived a general expression
for computing the RTD from a given monotonic velocity profile in
a circular pipe flow, their relations are almost unknown to the
community and have obviously not been used by other authors so
far. In this paper we extend these studies and derive, for the first
time, an explicit relation which allows computing the RTD from
arbitrary one-dimensional monotonic or non-monotonic (but
piecewise monotonic) laminar velocity profiles in planar, circular

and annular channels. This relation includes all previous results
from literature as special cases.

In Section 2 of this paper we give some basic definitions and
provide a general mathematical expression for computing the
convection model RTD from a given laminar velocity profile.
In Section 3 we apply the new theory and determine for various
velocity profiles the corresponding RTD. We recover some known
results from literature but also present new results not obtained so
far. In Section 4 we discuss the implications of the theory on the
asymptotic behavior and the variance of the RTD. The paper closes
by a short summary and conclusions in Section 5.

2. General pure convection RTD theory

2.1. Basic definitions

We consider a straight flow domain with length L, constant
cross sectional area A, volume V ¼ LA, constant total volumetric
flow rate Qtotal, mean velocity Um ¼ Qtotal=A, and mean (hydro-
dynamic) residence time tm ¼ V=Qtotal ¼ L=Um. We assume that the
flow in this domain is steady, unidirectional (axial) and obeys a
given fully developed laminar one-dimensional velocity profile.

In the sequel, we express all results in terms of the non-
dimensional time θ¼ t=tm. The non-dimensional residence time
of the fastest fluid elements is commonly denoted as first-
appearance time or break-through time; it is given by
θF ¼ Um=Umax, where Umax is the maximum velocity of the profile.
For θoθF it is Eθ ¼ F ¼ 0; the equations given for Eθ and F in the
remainder of the paper refer to θZθF only.

For any RTD, the zero and first moment are unity, i.e.

μ0 ¼
Z 1

0
Eθdθ¼ 1; μ1 ¼

Z 1

0
θEθdθ¼ 1 ð1Þ

The definition of the variance is

σ2
θ ¼

Z 1

0
θ�1
� �2Eθdθ

¼ �1þ2
Z 1

0
θð1�FÞdθ¼ �1þθ2

F þ2
Z 1

θF

θð1�FÞdθ ð2Þ

Table 1
Overview on pure convection RTDs for one-dimensional velocity profiles derived in previous literature for different fluids and flow type/driving-force (C¼Couette flow,
E¼electro-osmotic driven, F¼ falling film flow, G¼generalized velocity profile, P¼pressure-driven flow). RTDs which are first derived in the present paper are also included.

Geometry Fluid/velocity profile Flow type Reference

Planar Newtonian C Levenspiel et al. (1970)
“ F Asbjornsen (1961)
“ P Levenspiel (1989)
“ CþP Levenspiel et al. (1970) only monotonic case; present paper: non-monotonic case
Bingham F Zakharov (2006)
Ostwald-de Waele C Foraboschi and Vaccari (1965)
“ F Zakharov (2006)
Prandtl–Eyring F Sawinsky and Simandi (1983)
Generalized root law G Present paper

Circular pipe Newtonian P Bosworth (1948), Danckwerts (1953)
“ PþE Hsu and Wei (2005)
Bingham P Wein and Ulbrecht (1972)
Casson P Sawinsky and Balint (1984)
Herschel–Bulkley P Wein and Ulbrecht (1972)
Ostwald-de Waele P Foraboschi and Vaccari (1965), Novosad and Ulbrecht (1966)
Prandtl–Eyring P Wein and Ulbrecht (1972)
Rabinowitsch P Wein and Ulbrecht (1972)
Generalized root law G Bosworth (1949)
Generalized exponential and sinusoidal law G Pegoraro et al. (2012)

Concentric annulus Newtonian P Nigam and Vasudeva (1976) in implicit form; present paper: explicit form
Ostwald-de Waele P Lin (1980) approximate; Pechoc (1983) numerical
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