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H I G H L I G H T S

� A robust probabilistic method is proposed to deal with the soft sensing problem.
� Mixture of robust probabilistic principal component analysis with Student t-distribution is used for modeling.
� The expectation–maximization algorithm is employed for parameter learning.
� Bayes soft alignment method of local predictions is developed for online soft sensing.
� The superiority of the developed method is tested on the debutanizer column.
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a b s t r a c t

In this paper, a robust and mixture form of supervised probabilistic principal component analysis model
is proposed to deal with the soft sensing problem, particularly for those processes with multiple
operating conditions and the collected datasets may contain outliers. Under the framework of latent
variable models, the commonly adopted multivariate Gaussian distribution assumption is replaced by
the multivariate student t-distribution so as to tolerate the notorious outliers by using the adjusted
heavy tail. After the construction of robust probabilistic model, the iterative expectation–maximization
algorithm is derived to perform the parameter estimation for both single and mixture models. For online
soft sensing application, the Bayes rule is introduced for soft alignment of local prediction results. Two
case studies are provided for performance evaluation of the proposed method, both in comparison with
the conventional supervised model. Results indicate that the new model is much more reliable under
outlier contaminated and multimode conditions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, industrial plants are usually equipped with a large
number of hardware sensors in order to collect process data for
monitoring and control (Kadlec et al., 2009; Ge et al., 2013a,
2013b). In most cases, the key variables or quality variables which
indicate the production state are hardly available by hardware
sensors and have to undergo lab analyses. However, lab analyses
are expensive and time-consuming thus may cause time delay
which is contradictive to the real-time requirement for process
monitoring and control. To overcome the deficiency of hardware
instruments, predictive models called soft sensors are usually
constructed to perform quality variables predictions with the

available easy-to-measure process variables (Facco et al., 2009;
Fujiwara et al., 2012; Yan et al., 2004).

Roughly speaking, there are two main types of soft sensors,
namely model-based soft sensors and data-based soft sensors.
Model-based techniques require the explicit model dynamical
evolution presentations. However, a detailed and complete state-
space description for complex industrial systems can be expensive,
time consuming and sometimes technically unavailable (Lin et al.,
2007). On the contrary, the data-based soft sensors can be derived
directly based on the data measurements which demand the least
model knowledge. Meanwhile, with the development of the
distributed control systems and the popularization of large capa-
city database techniques, a great volume of process data could be
collected and recorded, which provides a great convenience for
statistical data analysis and diagnosis. As a result, the data-based
sensors have gained continuous and increasing focus in the field
over the last few years (Khatibisepehr et al., 2013). Conventionally,
most data-based soft sensors resort to statistical regression
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methods such as multivariate regression, principal component
regression (PCR) and partial least regression (PLS) (Ahmed et al.,
2009; Kaneko et al., 2009). There are also other intelligent soft
sensors based on machine learning techniques like artificial neural
networks (ANN), support vector regression (SVR) and their corre-
sponding improvements (Chen and Wang, 1998; Yu, 2012).
Although models like PCR have been widely used, a main draw-
back for these methods is the lack of a proper probabilistic
definition of underlying uncertainty introduced by data noise. To
get over this issue, the probabilistic version of PCR (PPCR) based on
EM algorithm has been proposed under the framework of latent
variable models (Zhou et al., 2013). By introducing the random
distribution property for each variable, the PPCR is more extend-
able and elegant in model selection and parameter estimation
with the Bayesian inference mechanism. Recently, the PPCR has
also been extended into the mixture form and has been experi-
mentally proved effective in dealing with the multi-mode indus-
trial cases (Ge et al., 2011).

Despite the noisy uncertainties, another notorious problem for
soft sensor modeling is the appearance of outliers (Hodge and
Austin, 2004; Khatibisepehr and Huang, 2008; Khatibisepehr et al.,
2013). The outliers are often considered as those measurements
deviate from the typical ranges of collected process data. It should
be noted that most soft sensors are constructed under the ideal
condition that no outliers are mixed within the modeling cases
(De La Torre and Black, 2003). Unfortunately, it is known that most
industrial datasets contain outliers due to incorrectly observed,
recorded or copied process measurements. Generally speaking,
outliers can be treated as obvious ones and non-obvious ones
according to whether or not the values are beyond the meaningful
ranges (Kadlec et al., 2009). In some conditions, certain mean-
ingless outliers can be easily excluded given the upper and lower
limits for each sensor. However, many outliers include the obvious
ones may not simply exceed the given limits. Hence, manual
evaluation and discard can be arduous and inefficient. Moreover,
simply discard of outliers could be another drawback since the
information loss can lead to a biased estimation for parameters
(Fang and Jeong, 2008). As alternatives, some methods turn to
design robust estimations for the original regression models such
as robust PCR, robust PLS and robust partial least squares regres-
sion (PLSR) etc (Gil and Romera, 1998; Hubert and Branden, 2003;
Hubert and Verboven, 2003). However, none of these gives the
general probabilistic explanation for process data uncertainties.

Recently, some researchers have tried to introduce the student
t-distribution into the probabilistic modeling framework so as to
handle the outliers in a more natural and friendly manner (Jylänki
et al., 2011; Luttinen et al., 2012; Wei and Li, 2012). Compared with
the Gaussian distribution which is commonly appeared for con-
structing PPCR and PPCA, the student t-distribution shows more
stability and compatibility due to its heavy tail. The heavy tail is
usually adjusted by the parameter called degree of freedom which
is learned and adapted from the training procedure. Therefore, the
student t-distribution is more robust to outliers than the Gaussian
one (Zhu et al., 2014). Notice that different from the robust PCR/
PLS that takes the hard strategy by detecting and rejecting outliers,
the Student t model softly explains the outliers with probabilistic
framework which in terms makes the robust model more elegant
and extensible for modeling as well as parameter learning. Due to
the desirable and elegant interpret ability for outliers, more and
more studentized models can be found which have been devel-
oped upon the original Gaussian ones such as the student
t-mixture model, the robust PPCA and its mixture form etc
(Archambeau et al., 2006, 2008; Chatzis et al., 2009; Svensén
and Bishop, 2005). However, as far as we know, no studies have
been investigated to develop the robust soft sensors and make the
industrial applications from the student t aspect.

The motivation of this article is to propose a novel soft sensing
model called robust supervised probabilistic principal component
analyzer. First, the conventional SPPCA is modified into the student
t-version to conduct the robust modeling phase within potential
outliers. Then, the obtained model is extended into the mixture
version with the EM algorithm so as to cope with the multimode
data characteristics. During the online soft sensing procedure, for
each new coming measurement, instead of hard assignment, the
estimated value from each local model is softly aligned with the
corresponding weight, and the global estimation is considered as
the current time production quality. Notice that the local weight is
computed with the posterior of the measurement with respect to
each local model, which can be realized with the Bayes rule.

The rest of this paper is organized as follows. In Section 2, the
conventional supervised PPCA are revisited. Then the robust
supervised PPCA is proposed and the corresponding mixture
model is further developed with the EM algorithm in Sections
3 and 4, respectively. Followed by the algorithm, the online soft
sensing mechanism is developed based on the proposed model.
After that, two case studies are used to validate the proposed
method in Section 6. Finally, the conclusions are made.

2. Preliminaries

In this section, the traditional SPPCA is briefly revisited. As a
first step and introduction, we first come to the PPCA method.

2.1. PPCA

Given data set fxnjxnARDgNn ¼ 1, where N is the sample number,
D is the number of dimension for data space, the PPCA tries to find
a linear projection from the original measurements to a lower
dimensional latent vectors ftnjtnARdgNn ¼ 1, the generative model
can be described as follows (Tipping and Bishop, 1999):

xn ¼ Ptnþμþen ð1Þ
where eARD�1 denotes the noise, PARD�d is the orthogonal
projection matrix, tARd�1 is the latent variable vector, μARD

denotes the offset, doD. Notice that here the latent dimension
number is assumed to be given and we will discuss the choice for
latent dimensionality later on. In PPCA, the probability distribu-
tions for latent variable and the noise are both assumed as
Gaussian ones; therefore, we have pðtnÞ ¼Nð0; IdÞ pðenÞ ¼Nð0; τIDÞ
and pðxjtnÞ ¼NðPtnþμ; τIDÞ. Here, Id denotes the d-dimensional
identity matrix for covariance, τ represents the magnitude and
equals to the square of standard deviation. The parameters for
PPCA is Θ¼ fP;μ; τg can be obtained by maximum likelihood
approach or the EM algorithm, for details, one can refer to
Archambeau et al. (2008), Kim and Lee (2003).

2.2. SPPCA

The SPPCA extends the PPCA by incorporating the label
information into the projection phase. The aim of extension is to
build predictive models so as to deal with the soft sensing
problems. Different from PLS which simply consider the inter
covariance, SPPCA finds the projection based on both the inter
covariance and the intra covariance between the input and the
output (Yu et al., 2006). For comparison, the probabilistic graphic
models for PPCA and SPPCA are depicted in Fig. 1(a) and (b).

Given input (process variable related) dataset fxnjxnARDx gNn ¼ 1

and output (quality relevant related) dataset fynjynARDy gNn ¼ 1, the
generative model for SPPCA is given as (Ge et al., 2011)

xn ¼ Ptnþμxþen ð2Þ
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