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H I G H L I G H T S

� A structure-dependent energy analysis of the gas–solid fluidization is presented.
� The structure-dependent analysis unifies the TFM and EMMS.
� The scale-dependency of the EMMS stability condition deserves further efforts.
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a b s t r a c t

The two-fluid model (TFM) has been widely applied in simulation of various multiphase flow systems. In
particular, for fine-particle circulating fluidization, the drag force plays a critical role whereas the classic
drag models based on empirical correlations of homogeneous fluidization are found inadequate.
Therefore, various approaches have been proposed in recent years to account for the effects of meso-
scale structure on the drag force, in which the energy-minimization multi-scale model (EMMS) has
received rapidly growing applications.

However, the relationship between the TFM and EMMS has not been clarified to enable their
combination. To solve this problem, we present a structure-dependent analysis of mass, momentum
and energy conservation equations. This analysis is rooted in the structure-dependent multi-fluid model
(SFM), which details the composition of drag forces and energy consumptions and their relationships with
consideration of meso-structures. With assumption of homogeneous structures, it reduces to the TFM
equations; for steady-state systems with structures, it restores the force balance equations, equal pressure
drop relation and energy relationship of the EMMS. In future, the scale dependence of this analysis
deserves more efforts to understand the applicability of the EMMS stability condition on different scales.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The meso-scale structures play an important role in characterizing
gas–solid fluidized system (Agrawal et al., 2001; Li and Kwauk, 1994).
In continuous change with respect to time and space, they may
manifest the dilute and dense phases, alternately, which can be
described by certain bi-modal distribution in terms of bubble-
emulsion or broth-cluster flow patterns depending on the operating
conditions and material properties (Cui et al., 2000; Hartge et al., 1988;
Li and Kwauk, 1994, 2001; Li et al., 1998; Lin et al., 2001; Ren et al.,
2001). The meso-scale structures have significant effect on the flow,
heat and mass transfer and reaction rate of the fluidized systems,
whereas a classical continuum method, such as the two-fluid model

(TFM), does not include explicitly the parameters for meso-scale
structures (Gidaspow,1994). Therefore, more andmore efforts in recent
years have been devoted to the research on how to include the effects
of these unresolved, meso-scale structures in computational fluid
dynamics (CFD) simulations. (Agrawal et al., 2001; Dong et al., 2008;
Igci et al., 2008; Li and Kwauk, 1994; O'brien and Syamlal, 1993; Wang
and Li, 2007; Yang et al., 2003; Zhang and VanderHeyden, 2002).
Generally, these efforts can be classified into two directions, reflecting
the controversial viewpoints: Whether there are sub-grid structures that
cannot be resolved by the TFM even with high grid resolution? (Agrawal
et al., 2001; Lu et al., 2009; Syamlal and Pannala, 2011; Wang et al.,
2010). High resolution simulations of gas-particle flows via two-fluid
models are found to be able to yield fine structures at length scales as
small as 10 particle diameters (Agrawal et al., 2001), but some argued
that these fine structures are not real features of gas-particle flows and
the TFM is hence an inadequate manifestation of the continuum
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description of the gas-particle flow (Lu et al., 2009; Sundaresan, 2011).
Thus, if the answer to the above question is negative, considering the
formidable cost of such high resolution simulation, one could, in
principle, extract constitutive models for two-fluid models through
highly resolved simulations of kinetic theory based model equations in
periodic domains (Andrews et al., 2005; Igci et al., 2008; Parmentier et
al., 2012; Schneiderbauer and Pirker, 2013). If the answer is positive,
however, one should appeal to fully resolved simulation methods, such
as direct numerical simulations (DNS) (Dijkhuizen et al., 2010; Xiong et
al., 2012), which are expected to be the final and best solutions but are
restricted by their high demand in computational resources. Thus they
are applied only in small-scale practice over periodic domains to
extract structure-dependent closures for higher level simulations.
Alternatively, one could explore new models with consideration of
meso-scale structures. The energy-minimization multi-scale model
(EMMS) and its follow-ups provide exactly the latter efforts in looking
for alternative models for continuum description with meso-scale
structures (Li and Kwauk, 1994; Wang and Li, 2007; Yang et al.,
2003; Hong et al., 2012).

Bear in mind the bi-modal distribution in gas–solid fluidization, we
know that the flow behaviors of the gas (solid) in the dilute and dense
phases are quite different, and then their conservation equations should
be set up differently. From the EMMS principle (Li and Kwauk, 1994; Li
and Huang, 2014), the steady state of gas–solid flow is determined by
the alternate appearance between the dense state dominated by ε¼min
and the dilute state dominated by Wst¼min. If averaged, this mechan-
ism will be distorted and blurred out. Based on this idea, Hong et al.
(2012) proposed the structure-dependent multi-fluid model (SFM), in
which four sets of conservation equations were derived for gas and
solid in both the dilute and dense phases, respectively. As shown by
Hong et al. (2012), when particles can be well described by an average
value, or, the local equilibrium is satisfied, the SFM equations reduce to
the TFM; if the dilute-dense two-phase structures are set for steady
state, the SFM reverts to the mass and force balance equations of the
EMMS (Li and Kwauk,1994). Thus, both the TFM and the hydrodynamic
part of the EMMS can be viewed as a specific case of the more
generalized SFM, or, the SFM unifies the TFM with the EMMS in terms
of the mass and momentum conservation equations.

Furthermore, the EMMS distinguishes itself from the other hydro-
dynamic models with its stability condition, which is presumed
according to the principle of compromise in competition (Li and
Kwauk, 1994; Li and Huang, 2014), in terms of the minimization of
energy consumption for suspending and transporting particles for a
fluidized bed. Thus, to better understand the EMMS and its relationship
with the TFM and SFM, it is necessary to analyze the energy consump-
tion and dissipationwith respect to the dilute-dense bi-modal structure.
As the structure-dependent analysis of the mass and momentum
equations has been detailed in our previous work (Hong et al., 2012;
2013), in this article, we will mainly focus on the structure-dependent
energy analysis, aiming to show the composition of energy consump-
tions and compare it with the stability condition of the EMMS.

The following energy analysis is rooted in the SFM conservation
equations. First, we analyze the composition of energy consump-
tion and energy relationships in gas–solid fluidized beds using the
SFM. Then, the results under steady state are compared with the
EMMS, highlighting the physical meaning of the energy terms
defined in the EMMS. Finally, the scale-dependency of the stability
condition of the EMMS is discussed.

2. Energy analysis with SFM

2.1. Energy conservation of the gas phase

In Hong et al. (2012), the gas–solid flow in any control volume
is divided into four parts: dilute-phase gas, dilute-phase solid,

dense-phase gas and dense-phase solid, among which there are
mass and momentum exchanges. First, we use the SFM to analyze
the composition of energy consumption and energy relationships
of the gas phase, whose conservation equations can be written as
follows using model A(Gidaspow, 1994):

Continuity equation for the dense-phase gas:

∂
∂t
ðf εcρgÞþ∇U ðf εcρgucÞ ¼ Γg : ð1Þ

Momentum equation for the dense-phase gas:

∂
∂t
ðf εcρgucÞþ∇Uðf εcρgucucÞ ¼ � f εc∇pþ∇Uðf τcÞþ f εcρgg� fFcþΓgui

g :

ð2Þ
Continuity equation for the dilute-phase gas:

∂
∂t
½ð1� f Þεf ρg�þ∇U ½ð1� f Þεf ρguf � ¼ �Γg : ð3Þ

Momentum equation for the dilute-phase gas:

∂
∂t
½ð1� f Þεf ρguf �þ∇U ½ð1� f Þεf ρgufuf � ¼ �ð1� f Þεf∇pþ∇U ½ð1� f Þτf �

þð1� f Þεf ρgg�ð1� f ÞFf �Fi�Γgui
g : ð4Þ

where, ρg , f , εc , εf , uc and uf stand for the gas density, the volume
fraction of the dense phase, the void fraction in the dense phase,
the void fraction in the dilute phase, gas velocity in the dense
phase and gas velocity in the dilute phase, respectively; Fc , Ff and
Fi represent the gas–solid drag per unit volume of the correspond-
ing phase; ui

g and Γg represent the interfacial gas velocity and the
rate of mass exchange between the dilute and dense phases per
unit volume. The gas pressures in the dense and dilute phases are
assumed equal to each other. Detailed definitions and expressions
can be found in Hong et al. (2012).

As a definition, the acceleration of phase k reads

ak �
Duk

Dt
¼ ∂uk

∂t
þuk U∇uk: ð5Þ

So combining Eqs. (1), (3) and (5), the left hand side (LHS) of
Eqs. (2) and (4) can be rewritten as

∂
∂t
ðf εcρgucÞþ∇Uðf εcρgucucÞ ¼ f εcρgacþΓguc; ð6Þ

∂
∂t
½ð1� f Þεf ρguf �þ∇U ½ð1� f Þεf ρgufuf � ¼ ð1� f Þεf ρgaf �Γguf : ð7Þ

Substituting Eqs. (6) and (7) into Eqs. (2) and (4), we get

f εcρgac ¼ � f εc∇pþ∇Uðf τcÞþ f εcρgg� fFcþΓgðui
g�ucÞ ð8Þ

ð1� f Þεf ρgaf ¼ �ð1� f Þεf∇pþ∇U ½ð1� f Þτf �þð1� f Þεf ρgg
�ð1� f ÞFf �Fi�Γgðui

g�uf Þ ð9Þ

The energy conservation of the entire gas phase can be
obtained as a dot product of the momentum equations and
relevant velocities. Then, Eq: ð8ÞUucþEq: ð9ÞUuf gives

f εcρguc Uacþð1� f Þεf ρguf Uaf
¼ �½f εcucþð1� f Þεfuf �U∇p

þρg½f εcucþð1� f Þεfuf �Ug
þf∇Uðf τcÞUucþ∇U ½ð1� f Þτf �Uuf g
�½fFc Uucþð1� f ÞFf Uuf þFi Uuf �
þ½Γgðui

g�ucÞUuc�Γgðui
g�uf ÞUuf �: ð10Þ

If we define the kinetic energy of the gas phase per unit volume
as follows:

Ek;g ¼
1
2
f εcρguc Uucþ1

2
ð1� f Þεf ρguf Uuf : ð11Þ
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