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H I G H L I G H T S

� Heterogeneity should be included explicitly in drag correlation.
� Linear dependence of drag on Re is validated for fixed heterogeneity in 5oReo30.
� The traditional drag law is inadequate for dynamic gas–solid suspensions.
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a b s t r a c t

Quantification of drag F is critical to the simulation of gas–solid flows in both discrete particle models
and two-fluid models. It is commonly accepted that for homogeneous flow the drag is a function of solid
volume fraction ϕ and particle Reynolds number Rep (based on the mean slip velocity and particle
radius). However, its adequacy for heterogeneous flows encountered more frequently is in debate yet. In
this work, we reveal the strong structural dependence of the drag in both a simple case of two particles
and a typical case with stepwise heterogeneity, demonstrating the necessity for a structure-dependent
drag description. To quantify such dependence, flow past idealized static suspensions with linear
heterogeneity is studied first, which confirms a general form F(Rep,ϕ,|∇ϕ|,θ) suggested previously, where
θ is the angle between the gradient ∇ϕ and the mean slip velocity. In the studied range of 5oRepo30, F
depends linearly on Rep for a given static particle configuration. However, the concrete expressions
are yet to be found. Then for dynamic gas–solid suspension, large-scale simulations enabled by
supercomputing systems reveal a much more complicated dependence: on one hand, the drag coefficients
on individual particles scatter even in the absence of distinct heterogeneity; and on the other hand, with
the presence of distinct heterogeneity, the drag predicted by Wen and Yu (1966) deviates significantly
from the simulation value in both direction and magnitude. A purely bottom-up statistical approach to
establish a drag correlation in this case seems difficult and a theoretical elucidation is needed.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Gas–solid flows are characterized by strong multi-scale hetero-
geneity in both time and space (Li and Kwauk, 2001), such as in
fluid catalytic cracking (FCC) of heavy oil and coal gasification
(Avidan et al., 2011), which proposes great challenges to the
quantification and prediction of their hydrodynamic behavior
through theoretical treatment, physical experiment, or computer
simulation.

In terms of computer simulation, most researches so far have
employed the so-called two-fluid models (TFM, Anderson and
Jackson, 1967) and discrete particle models (DPM, Tsuji et al.,
1993). Both models assume that at scales much larger than that of
the solid particles, the averaged fluid phase is continuous, which
validates an Eulerian description based on the volume-averaged
Navier–Stokes equations. For the solid phase, the former adopts an
Eulerian approach similar to that of the gas phase while the latter
employs a Lagrangian approach to track the motion of each solid
particle individually. For both models, the interphase momentum
transfer term distinguishes them from single phase Navier–Stokes
equations and is significantly affected by the heterogeneity of gas–
solid flows (Li and Kwauk, 2001). The drag caused by the relative
motion between the two phases is the predominant component in
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this interaction. Though it has attracted decades of extensive
research, a reliable quantification of the heterogeneity effect on
the drag is yet to be obtained. Ten years ago a structure-dependent
drag model was proposed (Yang et al., 2003), which has improved
significantly the accuracy of TFM. It is based on the so-called
Energy Minimization Multi-Scale (EMMS) model (Li, 1987; Li et al.,
1988; Li and Kwauk, 1994), which describes the heterogeneity in
concurrent-up gas–solid flow in terms of decomposed dense and
dilute phases. In recent years, more and more studies (Beetstra et
al., 2006; Ten Cate and Sundaresan, 2006; Zhang et al., 2011) have
demonstrated the necessity of this approach, and other models
were proposed to consider the effect of unresolved structures on
the drag, e.g., the filtered two-fluid models based on fine-grid
simulation (Igci et al., 2008; Parmentier et al., 2012).

However, these studies so far are mainly focused on scales
above the characteristic length of the heterogeneous structures,
such as the bubble or cluster diameter. Such characteristic scale is
usually termed as meso-scale (Li and Kwauk, 2001). In fact, the
EMMS model is valid both at and above the meso-scale (Zhang
et al., 2005). Whether fine-grid simulations below the meso-scale
can finally reproduce the macroscale flow behavior without
introducing a modified drag correlation, and, if not, whether
new parameters, such as the gradients of the flow variables
(Marchioro et al., 2000; Ten Cate and Sundaresan, 2006), should
be introduced into the drag correlation to account for the effect of
the heterogeneity remain as open questions.

In fact, Li et al. have shown in the development of the EMMS
model that the magnitudes of the drag coefficients in the dense
and dilute phases and on their interface can be different in orders
(Li et al., 1993), for which we have discussed previously a simple
case, that is, the stepwise heterogeneity (Ge, 1998), to elaborate
such drag distribution. Inspired by these studies, Xu et al. (2007)
proposed a computational scheme to account for the effect of
heterogeneity on the drag distribution in a DPM element by
assuming linear variation of ϕ and introducing its gradient as a
new parameter. Nevertheless, we are still short of systematic study
about the effect of heterogeneity on the drag with fully-resolved
simulation. In recent years, the dramatic development of super-
computing, especially the combination of many-core paralleliza-
tion and scalable flow solvers has brought about new possibilities
(Wang et al., 2010; Xiong et al., 2010, 2012), that is, direct
numerical simulation (DNS), where the Navier–Stokes equations
are solved directly with the no-slip boundary conditions enforced
on particles' surfaces and the drag is obtained by integrating the
stress on these surfaces. It is believed to give the most funda-
mental and reliable numerical description of the drag. The lattice
Boltzmann method (LBM) (McNamara and Zanetti, 1988) is chosen
to solve the fluid phase due to its high efficiency, intrinsic
parallelism and inherent adaptability to complex geometries.
Hill et al. (2001a, 2001b) applied the method to study flow past
ordered and random arrays of particles for a wide range of particle
Reynolds number Rep and solid volume fraction ϕ, and finally
expressed the drag as a function of these two variables. A series of
publications on the drag have followed with different focuses,
varying from low (Van der Hoef et al., 2005; Yin and Sundaresan,
2009) to high Reynolds numbers (Beetstra et al., 2007; Holloway
et al., 2010), from mono- to bi-disperse particles (Van der Hoef
et al., 2005; Beetstra et al., 2007; Holloway et al., 2010; Yin and
Sundaresan, 2009), and with or without (Tenneti et al., 2010, 2011)
consideration of granular temperature. In all these works, how-
ever, all the particles were uniformly distributed throughout the
domain during the simulations, so all the systems were supposed
to be homogenous.

In this study, to reach some definite conclusions about the
effect of heterogeneity on the drag, the study will be limited
to some specific cases. We will first study two very elementary

structures, that is, a pair of isolated particles and a typical
structure with stepwise heterogeneity. Then to get a more quanti-
tative understanding of the effect, we work on a relatively easy but
idealized case where ϕ displays a linear heterogeneity which can
be clearly quantified by its gradient ∇ϕ. To be more specific, we
confine the simulations to only two typical ϕ values in the range
5oRepo30 (Rep is based on particle radius), where, as we know
for the homogeneous structure, the drag depends linearly on Rep
at constant ϕ (Hill et al., 2001a, 2001b). Quite a few engineering
systems fall into this range, such as circulating fluidized bed coal
combustion (Zhu et al., 1995). Although the particles are kept static
in this case, it is still relevant to dynamical gas–solid flows since
the typical Stokes number St here may reach up to O(104). Larger
particle inertia means that the response time of the particle
dynamics to the flow disturbance is much longer than the
characteristic time in fluid flow, so that the hydrodynamics in a
typical gas–solid suspension resembles that in a corresponding
fixed bed, which is the prerequisite to establish drag models with
fixed beds. We finally analyze the drag distribution in a dynamical
gas–solid suspension simulated under periodic boundary condi-
tion, aiming to get closer to the effect of heterogeneity on the drag
in real systems.

2. Numerical method

LBM can be considered as an approach to solve the discretized
Boltzmann equation on regular lattices where the fluid is modeled
as fictitious particles. At each time step, the particle distribution
function fi in one of the discretized directions, i (typically the
orthogonal and diagonal directions in the Cartesian coordinates),
is solved as the primary variable through the standard evolution
equation (McNamara and Zanetti, 1988)

f iðxþeiΔt; tþΔtÞ ¼ f iðx; tÞþ
1
τ
ðf eqi ðρ; vÞ� f iðx; tÞÞ; ð1Þ

where τ is the dimensionless relaxation time. Also in Eq. (1), ρ and
v are the density and velocity of the fluid, respectively, which both
are functions of time and space. f eqi is the equilibrium distribution
function defined as (Qian et al., 1992)
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where ei and ωi are the unit vector and the lattice weight along
direction i, respectively. Cs is the speed of sound which equalsffiffiffi
3

p
=3 in lattice unit. The dimensionless relaxation time τ is related

to the fluid viscosity by the following expression:

ν¼ 1
3
ðτ�0:5Þh
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where h and Δt are the space and time steps, respectively.
The standard D3Q19 model with 19 discrete velocities in the

three dimensional discrete space (d'Humières et al., 2002) is used
here. The computation is split into the propagation step and the
collision step. At the propagation step, the particle propagates to
its nearest neighbors along each corresponding direction via the
distribution function, so the propagation operation involves only
its nearest neighbors. Meanwhile, the collision step is considered
as a relaxation towards a local equilibrium state that involves the
variables associated with only each node itself; therefore the
step has purely local operations only. The locality of the evolution
brings about significant advantage to LBM in its parallelization.

When LBM is employed to solve gas–solid flows, an extra module
has to be incorporated to deal with the fluid–solid coupling. In the
work of Ladd (1994a, 1994b), a modified bounce-back rule is
adopted to implement the no-slip boundary condition, which results
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