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H I G H L I G H T S

� A geometric dynamic observer is introduced for distributed parameter systems.
� The output feedback scheme includes observer and globally linearizing controller.
� The proposed controller is designed to solve the output tracking problem for DPS.
� The closed-loop stability of the DPS is proved under relaxed conditions.
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a b s t r a c t

We focus on the output tracking problem of distributed parameter systems (DPSs) which can be
described by a set of nonlinear dissipative partial differential equations (PDEs). The infinite-dimensional
modal representation of such systems in appropriate subspaces can be decomposed to finite-
dimensional slow and probably unstable, and infinite-dimensional fast and stable subsystems. Taking
advantage of this decomposition, adaptive model reduction techniques and specifically adaptive proper
orthogonal decomposition (APOD) can be used for the recursive construction of locally accurate low
dimensional reduced order models (ROMs). The proposed geometric APOD-based control structure is the
combination of a nonlinear Luenberger-like geometric dynamic observer and a globally linearizing
controller (GLC) designed for tracking the desired output. The proposed geometric control approach is
successfully illustrated on the output tracking of target thermal dynamics for a catalytic reactor.
Specifically, the geometric output tracking strategy is used to reduce the hot spot temperature and
manage the thermal energy distribution through reactor length during process evolution with limited
number of actuators and sensors.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recent interest in monitoring, optimization and control of
distributed parameter systems (DPSs) has significantly increased
in industrial chemical processes. This interest has specifically
grown in the processes that involve the coupling of chemical
reactions and diffusion/convection/dispersion mechanisms such as
bioreactors, catalytic reactors, lithographic operations, crystalliza-
tion and polymerization processes (Armaou and Christofides,
1999; Christofides and Daoutidis, 1997; Garcia et al., 2012;
Smyshlyaev and Krstic, 2005). It is imperative to tightly control
these processes so that there are zero product quality excursions,
even when the process objectives dynamically change during
operation, a usual occurrence in chemical industries. The task of

regulation and output tracking of such systems is challenging due
to spatial dependency of the system dynamics, and requires a
particular set of modeling and control tools to deal with the
spatio-temporal development of the objectives. Direct approaches
based on the infinite dimensional system theory are applied to
control of standard linear and bilinear DPSs (Balogh and Krstic,
2002; Byrnes et al., 1994; Curtain, 1986; Curtain and Glover, 1986;
Gauthier and Xu, 1991; Krstic, 2009; Lasiecka, 1995).

Spatially distributed processes with reaction and significant
diffusion terms can be mathematically modeled by a set of nonlinear
dissipative partial differential equations (PDEs) (Christofides, 2000).
Consequently, the infinite-dimensional representation of such
systems in appropriate Sobolev subspaces can in principle be
decomposed to a finite-dimensional slow and possibly unstable,
and an infinite-dimensional fast and stable, subsystems. Taking
advantage of this decomposition, such PDE systems can be approxi-
mated by a finite-number of ordinary differential equations (ODEs).
In detail, the solution of the PDE system can be presented as an
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infinite-sum of spatial basis functions times time-varying coefficients
called modes. Then the infinite-dimensional ODE system for the
modes can be derived using variants of weighted residual method.
The finite-dimensional reduced order model (ROM) can then be
derived by considering a proper number of ODEs corresponding to
the basis functions which capture the dominant dynamics of the
original PDE system. This standard strategy, named model order
reduction (MOR), has been frequently applied to address control,
monitoring and optimization problems of dissipative PDEs (Balas,
1979; Demetriou and Kazantzis, 2004).

On the basis of the above, when the set of basis functions is
computed, the PDE systems can be discretized and the ROMs can
be constructed. However the applicability of analytical model
reduction methods to industrial processes is limited due to com-
plex nonlinear spatial dynamics and irregular domains. Statistical
techniques like proper orthogonal decomposition (POD) are
usually used to bypass this limitation and construct empirical
basis functions (Armaou and Christofides, 1999, 2001; Pourkargar
and Armaou, 2013b; Christofides and Armaou, 2000; Pitchaiah and
Armaou, 2010; Sirovich, 1987). POD has been applied extensively in
model reduction, optimization and control of DPSs (Armaou and
Christofides, 1999, 2001; Christofides and Armaou, 2000; Izadi and
Dubljevic, 2013). It assumes the a priori availability of a sufficiently
large ensemble of PDE solution data in which the most prevalent
spatial modes are excited. To circumvent this requirement an efficient
recursive computation algorithm, known as adaptive proper orthogo-
nal decomposition (APOD), can be used as additional data from the
process becomes available. APOD is comprehensively described in
Pitchaiah and Armaou (2010) and Varshney et al. (2009); it is based on
algebraic manipulations leading to a three-fold increase in computa-
tional speed compared to brute-force streaming methods and similar
optimization based techniques allowing for its on-line implementa-
tion. A modification to APOD based on information theory concepts
was introduced for regulation of DPSs with fast transients (Pourkargar
and Armaou, 2013b). The novelty of the approach lies in modifying the
data ensemble revision steps within APOD to enlarge the ROM region
of attraction. The requirements on continuous measurement sensors
were then reduced using APOD-based dynamic observers (Pourkargar
and Armaou, 2013a, in press a). In addition, a criterion is characterized
to minimize the communication bandwidth from the distributed
sensors to the APOD-based control structure considering closed-loop
stability to identify how infrequent the ROM revisions can be
(Pourkargar and Armaou, in press b).

Generally, the existence of nonlinearities in chemical process
systems is the rule rather than the exception. Chemical reactions
and complex fluid dynamics are prevalent sources of nonlinea-
rities in such systems. Then the control design problem is
challenging due to the complexity of the systems’ dynamics and
their governing models (Kravaris and Kantor, 1990a). Recently, the
use of geometric methods in nonlinear process control and
observer design has significantly increased by reason of their
effectiveness in considering complex nonlinear dynamic of the
systems (see Alvarez, 2000; Alvarez and Lopez, 1999; Kravaris and
Kantor, 1990a, 1990b; Tronci et al., 2005 and references therein).
This approach can be directly applied to many nonlinear process
systems including reduced models of nonlinear DPSs where
nonlinearity plays an important role in their dynamics.

In this paper, an APOD-based geometric output feedback control
structure is synthesized for output tracking of nonlinear DPSs based
on continuous point measurements available from limited number of
sensors. The control structure is a combination of a nonlinear
Luenberger-like geometric dynamic observer and a globally lineariz-
ing controller (GLC). The specific structure is employed to compen-
sate model uncertainty due to model reduction procedure. Section 2
introduces a fewmathematical preliminaries used through the paper.
A short review on adaptive model reduction is presented in Section 3.

It includes the off-line and on-line computation of empirical basis
functions and ROM construction. The APOD-based geometric
dynamic observer and controller designs are described in Sections
4 and 5, respectively. Finally, in Section 6 the proposed control
structure is successfully illustrated on a catalytic reactor. The con-
troller considers the thermal dynamics of the reactor, reduces the hot
spot temperature and manages the thermal energy distribution
across the reactor length during process operation.

2. Preliminaries

2.1. Class of nonlinear dissipative PDE systems

A class of nonlinear dissipative, input-affine PDE systems is
considered with a state space representation of the following
form:

∂
∂t
xðz; tÞ ¼AðzÞxðz; tÞþF ðz; xÞþbðzÞuðtÞ;

ycðtÞ ¼
Z
Ω
cðzÞxðz; tÞ dz;

ymðtÞ ¼
Z
Ω
sðzÞxðz; tÞ dz;

yrðz; kÞ ¼
Z t

0
δðt�tkÞxðz; tÞ dt; ð1Þ

subject to boundary conditions

q x;
∂x
∂z
;…;

∂n0 �1x
∂zn0 �1

� �
¼ 0 on ∂Ω; ð2Þ

and initial condition

xðz;0Þ ¼ x0ðzÞ; ð3Þ
where xðz; tÞAR denotes the vector of state variables and uðtÞARl

is the vector of manipulated inputs. t is the time, zAΩ�R3

denotes the spatial coordinate and Ω is the process domain with
boundary, ∂Ω. AðzÞ and F ðz; xÞ are linear and bounded Lipschitz
nonlinear parts of spatial differential operator of order n0,
respectively. bT ðzÞARl is a smooth vector function of z that
describes how the control action is distributed in the spatial
domain, e.g. point actuation is defined using standard Dirac
delta. qð�Þ is a sufficiently smooth nonlinear vector function,
∂ix=∂zij∂Ω for i¼ 1;…;n0�1, denotes the spatial derivatives in the
direction perpendicular to the boundary and x0ðzÞ is a smooth
vector function of z. ycARυ is the vector of controlled outputs
where υ is the number of desired outputs. c(z) is a known vector
function of z which is determined by the desired performance
specifications in the process domain, Ω. We assume that two
types of measurement sensors are available during process
evolution: periodic distributed snapshot measurements,
yrðz; kÞAR, and continuous measurements, ymA Rw, where w is
the number of continuous sensors and k is a discrete variable
that indicates the sample time counter to taking the snapshots.
Note that yr indicates measured spatial profiles while ym is a
vector variable. s(z) is the sensor shape functions corresponding
to ym and tk is the time instance for snapshot measurement. In
this paper, the results are presented for xAR, however, it is
straightforward to extend them for xARn, by treating each state
independently (Sirovich, 1987). Once each state has been
reduced, the interactions between distributed system states
can be easily captured through the inner products of the modal
expansions.

2.2. Infinite-dimensional representation in Sobolev subspace

To address the control and observation problem we represent
the PDE system of (1)–(3) as an infinite-dimensional system in a
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