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a b s t r a c t

A new finite volume method for cylindrical heat conduction problems based on local analytical solution is
proposed in this paper with detailed derivation. The calculation results of this new method are compared
with the traditional second-order finite volume method. The newly proposed method is more accurate
than conventional ones, even though the discretized expression of this proposed method is slightly more
complex than the second-order central finite volume method, making it cost more calculation time on the
same grids. Numerical result shows that the total CPU time of the new method is significantly less than
conventional methods for achieving the same level of accuracy.

Crown Copyright � 2012 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Numerical methods, such as finite difference method, finite vol-
ume method, finite analytic method and finite element method,
are used to solve heat conduction problems, among which the
second-order central finite volume method is a most widely used
one [1].

In order to obtain more accurate results in solving heat conduc-
tion problems, a lot of studies have been carried out to accurately
determine the diffusion coefficient at the interface of the control
volume, such as arithmetic mean, harmonic mean and integral
mean interpolation method. Arithmetic mean [2,3], which corre-
sponds to linear interpolation between two control nodes, is easy
to handle as well as to program, making it widely used in the early
days [1]. Patankar [4] proposed harmonic mean based on thermal
resistance in series principle in 1978. Date [5] compared the per-
formance of arithmetic mean with that of harmonic mean, and
he highly recommended employing the latter. Harmonic mean
has become a mainstream interpolation scheme because of its
clear physical interpretation, especially suitable for composite
medium. Voller and Swaminathan [6] presented an integral mean
interpolation scheme based on Kirchhoff transformation. The
scheme has higher accuracy than arithmetic mean and harmonic

mean, but it needs numerical integration during the calculation,
leading to a larger workload, especially when the integral of diffu-
sion coefficient cannot be expressed analytically. Harmonic mean
and integral mean are proposed to improve the precision and con-
vergence rate.

During the Numerical Heat Transfer course given in China Uni-
versity of Petroleum-Beijing, the students were asked to compare
the calculations of two-dimensional heat conductions on a Carte-
sian coordinate and a cylindrical coordinate. To our surprise, it is
found that more grids are needed to obtain a grid-independent
solution for a cylindrical case under the same boundary condi-
tions and other conditions, especially when the ratio of the inner
radius to the outer radius is small. Fig. 1 shows the computa-
tional domain. Fig. 2 and Table 1 show an example of the
comparison of the relative error E, defined by
E ¼

PNGrid
N¼1

ðTc�TbÞ
Tb

=NGrid � 100% where Tc and Tb are respectively
the computed temperatures and grid-independent solutions. It
can be easily drawn that the slower convergence rate of cylindri-
cal heat conduction is due to the conduction area decreases with
the decrease of radius, making the heat flux related to radius.
Without considering the influence of the radius when we used
harmonic mean, the calculation precision becomes lower. In order
to improve the convergence rate of cylindrical heat conduction,
this paper presents a new finite volume method based on local
analytical solution, acquiring higher precision while employing
fewer nodes at the same time.
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2. Discretization of heat conduction equation in a cylindrical
coordinate

Firstly, let us review discretization of a two-dimensional cylin-
drical heat conduction using the finite volume method. The steady-
state heat conduction equation in a cylindrical coordinate can be
written as follows:
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Integrating over the control volume P, as shown in Fig. 3, we can
obtain:
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Discretized the first-order derivative by a second-order central dif-
ference scheme, Eq. (2) can be transformed to the expression below:

rP ke
TE � TP

ðdxÞe
� kw

TP � TW

ðdxÞw

� �
DrP þ rnkn

TN � TP

ðdrÞn
� rsks

TP � TS

ðdrÞs

� �
DxP

þ rPDxPDrPSP ¼ 0 ð3Þ

Rearranging Eq. (3), we can obtain the following equation:

aPTP ¼ aW TW þ aETE þ aSTS þ aNTN þ b ð4Þ

where

aP ¼ aW þ aE þ aS þ aN

aW ¼
rPkwDrP

ðdxÞw
; aE ¼

rPkeDrP

ðdxÞe
; aS ¼

rsksDxP

ðdrÞs
; aN ¼

rnknDxP

ðdrÞn
b ¼ rPDxPDrPSP

Thermal conductivity on the interface kw, ke, kn, ks can be calculated
by arithmetic mean or harmonic mean. Take the north interface as
an example, when arithmetic mean is adopted, then:

kn ¼
ðrN � rnÞkP þ ðrn � rPÞkN

rN � rP
ð5Þ

When harmonic mean is employed:

kn ¼
ðrN � rPÞkPkN

ðrn � rPÞkN þ ðrN � rnÞkP
ð6Þ

This paper aims at how to reduce discrete error as well as to im-
prove convergence rate to get grid-independent solution. In this re-
gard, the method employed in this paper, which based on local
analytical solution, intends to improve the accuracy of radial heat
flux qn, qs (first-order derivative k @T

@r jn; k @T
@r js) in Eq. (2). To obtain

the analytical expression of qn, qs, we can rewrite Eq. (1) as follows:
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and integrate Eq. (7) over interval P � n and n � N shown in Fig. 3.
In the control volume P and N, we assume thermal conductivi-

ties are constant kP and kN while source terms are S�P and S�N , respec-
tively. Based on the above assumptions, the temperature
expression over interval P � n and n � N can be obtained
below,Interval P � n:

T ¼ �1
4

S�P
kP

r2 þ C1 ln r þ C2 ð8Þ

Interval n � N:

T ¼ �1
4

S�N
kN

r2 þ C3 ln r þ C4 ð9Þ

Thus the temperatures at rP, rN can be written as follows:

Nomenclature

aP, aE, aW, aN, aS coefficients in the discretized equation
b source term in the discretized equation
cp heat capacity, J/(kg �C)
E relative error comparison,

E ¼
PNGrid

N¼1
ðTc�TbÞ

Tb
=NGrid � 100%

Grf Grashof number, Grf = gb(Th � Tl)l3/m2

g acceleration coefficient due to gravity, m/s2

hf convection heat transfer coefficient, W/(m2 �C)
h height of domain, m
l length of domain, m
NGrid total grid number
Prf Prandtl number, Prf = m/a
q heat flux density, W/m2

qB heat flux density of boundary, W/m2

r spatial coordinate
r1 internal radius, m
r2 external radius, m
r3 external radius in Fig. 15, m
R non-dimensional coordinate in r direction,

R = (r � r1)/(r2 � r1)
RT CPU time ratio of new scheme to central difference

scheme
S heat source, W/m3

S⁄ source term, S� ¼ Sþ @
@x ðk @T

@xÞ, W/m3

T temperature, �C
TB temperature of the bottom wall, �C

Tf ambient temperature, �C
Th high temperature, �C
Tl low temperature, �C
TL temperature of the left wall, �C
TR temperature of the right wall, �C
TT temperature of the top wall, �C
x spatial coordinate
X non-dimensional coordinate in x direction, X = x/l

Greek symbols
a thermal diffusivity, m2/s
b thermal expansion coefficient, �C�1

k thermal conductivity, W/(m �C)
ks thermal conductivity of solid in Fig. 15, W/(m �C)
kf thermal conductivity of fluid in Fig. 15, W/(m �C)
m kinematic viscosity, m2/s
s time, s
q density, kg/m3

Dx, Dr width of control volume in the x and r direction
dx, dr distance between adjacent nodes

Subscripts
car Cartesian coordinate
cyl cylindrical coordinate
e, w, n, s interfaces of the control volume P as shown in Fig. 3
P, E, W, N, S, NE, SE, NW, SW grid points as shown in Fig. 3
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