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An analysis of the effective thermal contact resistance between two semi-infinite solids in the presence of
a periodic array of rough zones at the interface is carried out on the basis of a solution of the correspond-
ing thermoelastic contact problem. The effect of the roughness is modeled by localized thermal contact
resistances varying inversely with the contact pressure. The contact problem is reduced to a nonlinear
singular integrodifferential equation, and an iterative procedure is proposed for its solving. The results
demonstrate that the periodic array of rough zones between two semi-infinite solids exhibits thermal
rectification. It is also found that the effective temperature jump and the effective thermal contact resis-
tance are nonlinear functions of a far field heat flux.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The effective thermal contact resistance of joints formed by
rough surfaces is of interest in many fields including microelec-
tronics, superconductors, nuclear engineering, bearings with lubri-
cation, aerospace structures design, micro/nanoscale thermometry,
and biomedical prosthetics.

When steady-state heat transfer takes place across the interface
between two solids that are pressed together, the presence of sur-
face roughness leads to the imperfect thermal contact. The imper-
fect thermal contact is characterized by the effective thermal
contact resistance or the effective thermal contact conductance.
The effective thermal contact resistance is defined as the ratio of
the average temperature jump 74, across the interface to the far
field heat flux g> [1-8], i.e.

Reff = yav/qx' (1)

The effective thermal contact conductance is the reciprocal of the
effective thermal contact resistance.

The results of the experimental investigations showed that the
thermal contact resistance varies with the contact pressure of sur-
faces of solids [3,8]. Several semi-empirical formulae which
express the relationship between the thermal contact resistance
and the contact pressure were proposed [3,6,9].
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In most thermoelastic contact problems available in the litera-
ture, the pressure-dependent thermal contact resistance is consid-
ered to arise in the whole region of contact [10-14]. However, the
local change of surface characteristics, in particular surface ther-
mal resistance, can be caused due to the surface treatment by local
melting, hardening or generating regular surface texture and dis-
crete coatings that are often applied in the engineering practice
[15-20]. At the same time, certain elements of contacting surfaces
are in different conditions, subjected to oxidation, wear, destruc-
tion under the action of a medium, and contamination in different
regions. Therefore, the investigation of the thermoelastic contact of
solids in the presence of local areas with varying thermal resis-
tance and determination of the effective thermal contact resistance
on this ground are important from the practical point of view.

Dundurs and Panek [21] and Panek and Dundurs [22] solved the
contact problem of heat conduction and the contact problem of
thermoelasticity for two semi-infinite solids with wavy surfaces
assuming that heat passes through the interface only where there
is solid to solid contact. Later, Sadhal [23] obtained a long-time
approximate solution for the corresponding transient problem of
heat conduction. Comninou and Dundurs [24] studied the thermo-
elastic contact between solids with a periodic array of thermally
insulated gaps at the interface. An analysis of thermal contact
between solids with a periodic array of interfacial gaps filled with
a conducting fluid was carried out by Das and Sadhal [25].

The thermoelastic contact of two half-spaces in the presence of
one region with a thermal resistance which is not dependent from
contact pressure, but which varies along this region, was previously
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studied by Shvets and Martynyak [26], Krishtafovich and Martyn-
yak [27,28], Martynyak and Chumak [29]. Martynyak and Chumak
[30] solved the thermoelastic contact problem when the localized
roughness is present at the interface. The influence of the localized
roughness on the heat transfer between solids was modeled by the
pressure-dependent thermal resistance. The thermomechanical
behavior of the bimaterial with the closed interfacial crack assum-
ing thermal contact resistance between the crack faces due to sur-
face films or roughness was analyzed by Martynyak et al. [31],
Martynyak [32,33], Giannopoulos and Anifantis [34], Keppas and
Anifantis [35], Giannopoulos et al. [36]. In the last five works, the
thermal contact resistance was regarded as a function of contact
pressure.

The goal of this study is to investigate the steady-state thermo-
elastic contact of two semi-infinite solids with a periodic array of
rough zones at the interface and determine the effective thermal
contact resistance for such a contacting couple.

2. Statement of the problem

The model for the present analysis and the orientation of the
coordinate axes with respect to the two semi-infinite solids are
shown in Fig. 1. The solids are pressed together by a nominal pres-
sure p*, and a far field heat flux ¢* is imposed in the direction nor-
mal to the interface. The materials of the solids are assumed to be
elastic, isotropic and dissimilar. The problem is posed in the frame-
work of linear thermoelasticity, assuming plane strain conditions.

The surface of the upper solid S; is perfectly smooth, while the
surface of the lower solid S, consists of a periodic array of rough
zones L=J,._ _Ln, Ly =[—a+ md,a+ md], where the surface is
rough, and a periodic array of smooth zones L' =J;x_ L, L, =
(a+md,—a+ (m+ 1)d), where the surface is smooth. The lengths
of the rough zones are denoted by 2a. The length of a period is ta-
ken to be d(d > 2a).

The effect of the roughness is determined by considering the
macroscopic thermal contact resistance R(x) which occurs within
each rough zone and varies inversely with the contact pressure
P(x), i.e.

R(x) = f(x)/P(x),

Here, f(x) is a periodic function that describes the distribution of
asperity heights in each rough zone.

The presence of the thermal contact resistances R(x) leads to the
temperature jumps y(x) across the interface within rough zones:

(%) =T (x,0) = T"(x,0), x€Lyn m=0,+1,+2,... (3)

xely, m=0,+1,+£2,... (2)

Fig. 1. Array of rough and smooth zones at the interface between semi-infinite
solids S; and S,.

Here, T(x,y) is the temperature, the superscripts * and ~ denote the
boundary values of the function on x-axis in the upper and lower
solid, respectively.

It is assumed that radiation and the effect of an interstitial med-
ium are insignificant, and there is no thermal contact resistance at
the smooth part of the interface. For simplicity, the contact is taken
as frictionless. It is also supposed that the global warping of the
two solids is suppressed by applying linearly distributed along y-
axis stresses o3y far away [24].

While the temperature perturbations arising out of a single
rough zone vanish away from the interface (y — *oc), the cumula-
tive effect of such perturbations arising out of the array of rough
zones will be noticeable far away from the interface. At the far
field, this cumulative effect manifests itself in an average temper-
ature jump )4, across the interface. For the case of the periodic sur-
face texture, the expression for the average temperature jump Y4,
can be given by Das and Sadhal [25]
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Because of the periodicity of all field quantities, the boundary
conditions need only be considered in the interval —d/2 < x < d/2.
In the intervals —d/2+md < x < d[2+md, m = %1, %2, ..., the bound-
ary conditions will be identical. The thermal boundary conditions at
the interface are:

qy (x.0) =q,(x,0), [x| <d/2; (3)
T (x,0) —T'(x,0) = R(x)q; (x,0), [x|<a; T (x,0)=T"(x,0),
a<lx <d/2. (6)

The mechanical boundary conditions at the interface are:
uy (x,0) = u, (x,0), [x <d/2; (7)
0,,(x.0) = 0,,(x.0), 0},(x0)=0, 0,(x0 =0, [x<d/2.(8)

The boundary conditions at infinity are

@ =0, q7=q~; 9)

oy = “f'Ef"")y, j=12. (10)
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Here, q(x.y), q,(x,y) are components of heat flux, ox(x,y), 0x/(X.y),
0y,(x,y) are stress components, u,(x,y) is a normal displacement, o, K,
E, v are the coefficient of linear thermal expansion, thermal conductiv-
ity, Young’s modulus and Poisson’s ratio, and the subscripts 1 or 2 are
used to denote quantities pertaining to the lower or upper solid.

3. Solution to the problem

3.1. Reduction of the problem to a nonlinear singular
integrodifferential equation

Using the technique developed by Shvets and Martynyak [26],
Martynyak [32], Malanchuk et al. [37], Martynyak and Chumak
[38,39] the temperature, heat fluxes, stresses and displacements
in the both solids can be expressed in terms of the Muskhelishvili’s
complex potentials (see (15) in [39]). For the periodic contact prob-
lem under consideration this potentials has the following form:

K a n(t—z
F =g | 100 = raleot ™5 P,
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