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a b s t r a c t

An accurate theoretical model that quantifies the distribution of phonon density is indispensable for
designing thermal resonators with high quality factor. This paper focuses on the modeling aspects of a
generic cantilever structure excited thermally at resonance by applying Cattaneo-Vernotte hyperbolic
heat conduction model. Critical analysis of the theoretical results revealed that the dynamic temperature
oscillations at resonant frequencies are quantised wave responses whose characteristics ascribe to the
quantum-mechanical behaviour of a particle inside a box. The theoretical predictions agree well with
the experimental evaluation of the dynamic response of Al-SiXNY bimaterial cantilever structure excited
electrothermally by a signal with constant power spectral density. An increase in Q by a factor of 4–5 was
achieved either by increasing the resonant frequency for a given length scale or by decreasing the length
scale when excited by a signal with a constant power spectral density. This will enable to design micro/
nano scale resonant devices with improved performance.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Thermal excitation is very promising for realising high fre-
quency resonators with large dynamic amplitude. The potential
of thermal excitation have not been fully explored due to the lack
of accurate theoretical models, which describe the heat transfer
mechanisms at small scales. The mechanisms associated with the
resonant energy transfer at different spatio-temporal intervals
had been studied previously using different models namely, the
Lattice-Boltzmann (LB) model [1], hyperbolic heat conduction
(HHC) model proposed by Cattaneo-Vernotte (CV) [2] and Langevin
model [3]. Recently, a unified theoretical formulation based on
classical Fourier solution [4] showed enough evidence on the influ-
ence of phonon density in exciting the resonant modes of a struc-
ture thermally besides providing an in-depth physical insight on
the underlying mechanisms. However quantifying the phonon
density dictated by the interplay between length scale, material
properties and frequencies have not been attempted yet for engi-
neering high Q resonators driven thermally. In this light, the pres-
ent work correlates the theoretical predictions with appropriate
experimental data in order to establish the design guidelines.

Practical applications include: resonant inertial sensors [5], mass
sensors [6] and flow control resonant actuators.

The present study applies hyperbolic heat conduction (HHC)
model proposed by Cattaneo-Vernotte for describing thermally
driven resonant phenomenon. The suitability of HHC model based
on equilibrium thermodynamics at time scales less than diffusion
time is debatable. However, for most micro/nano-system devices
with length scales varying between �10�1–103 lm, this modeling
approach provides a reasonably good estimates of temperature
amplitude for interpreting the characteristics of thermal wave
propagation. The physical significance of thermomechanical reso-
nance was illustrated by critically analysing the effect of different
parameters, which governs the dynamic temperature amplitude
at resonance. The key objectives are: to evolve a suitable theoreti-
cal model for describing thermally driven resonant behaviour of
cantilever structures and to corroborate theoretical predictions
with relevant experimental data. Due consideration is given to
the effect of spatial and temporal (frequency) variation on the Q-
factor of the response when excited electrothermally by a signal
with a constant power spectral density (PSD).

This paper is organised as follows. Section 2 discusses a theoret-
ical model evolved using HHC solution. Section 3 discusses the
physical significance of thermally driven resonant phenomenon
by analysing the dynamic temperature amplitude. Section 4 dis-
cusses the design implications of the analytical model supple-
mented by experimental data. Section 5 draws the key concluding
remarks from the present study.
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2. Analytical model for thermomechanical resonant excitation
of a cantilever structure

The thermomechanical resonant condition is governed by the
diffusion kinetics, which is dictated by the geometry, material
properties, frequency of the forcing function and the thermal/
mechanical boundary conditions [4]. At length/time scales associ-
ated with the mean free path of phonons, the diffusion phenome-
non degenerates in to a thermal wave propagation phenomenon
thereby causing spatial and temporal lag in the temperature gradi-
ent with respect to the heat flux vector [7]. The time scale for such
a behaviour is of the order of thermal relaxation time,
s ¼ 1=xth � a=c2

ph, where a is thermal diffusivity, cph = c=
ffiffiffi
3
p

is
the phonon speed which is ð1=

ffiffiffi
3
p
Þ of the speed of sound, c for an

isotropic material and xth is the threshold frequency above which
heat transfer occurs by thermal wave propagation. Consider a can-
tilever beam of length, L with the fixed end at x = 0 as shown in
Fig. 1. The flexural modes of the beam are excited thermally using
a uniformly distributed harmonic heat generation source, S = soejXt

where X is a constant excitation frequency. A one dimensional
HHC thermal model for temperature prediction is given as [7]
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where j, C, q denote thermal conductivity, specific heat capacity,
and density of the beam material. T(x, t) represents temperature
function at different spatial and temporal values. The geometry of
the beam is defined by its length, L and its cross sectional area, A.
The thermal boundary conditions for the problem defined by (1)
is given as

ðaÞ Tð0; tÞ ¼ Tw; ðbÞ TxðL; tÞ ¼ 0; ðcÞ Tðx;0Þ ¼ /1ðxÞ;
ðdÞ Ttðx;0Þ ¼ /2ðxÞ ð2Þ

where Tw is the constant temperature heat sink at which the wall of
the cantilever is maintained. The tip of the beam is thermally insu-
lated due to high surface to volume ratio of most thin film struc-
tures [8]. Neglecting the higher order terms (O(D3) and O(D5))
equation (1) can be rewritten as

jHxx þ ðSþ sStÞ ¼ qCðHt þ sHttÞ ð3Þ

where H = T � TW. The suffixes x and t in (4) represents partial
derivatives of T with respect to spatial and temporal variables
respectively. The modified thermal boundary conditions associated
with (3) are given as

ðaÞ Hð0; tÞ ¼ 0; ðbÞHxðL; tÞ ¼ 0; ðcÞHðx; 0Þ ¼ /ðxÞ � Tw;

ðdÞHtðx;0Þ ¼ wðxÞ � TW ð4Þ

A general solution for the temperature field of the form

Hðx; tÞ ¼ sinðbxÞhðtÞ ð5Þ

can be assumed which automatically satisfies (4a). Substituting (4b)
in (5) leads to

Hðx; tÞ ¼ sinðbmxÞhmðtÞ ð6Þ

where bm = (2m � 1)p/2L and m = 1,2,3, . . . are harmonics of Fourier
series. Rewriting the source term, S and the initial conditions, /1(x)
and /2 (x) as functions of Fourier harmonics, m gives

S ¼ soejXt ¼ soDm sinðbmxÞejXt ; /1ðxÞ ¼ /1m sinðbmxÞ;
/2ðxÞ ¼ /2m sinðbmxÞ ð7Þ

where
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2
L
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0
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2
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Z L
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/2m ¼
2
L

Z L

0
/2ðxÞ sinðbmxÞdx ð8Þ

Substituting (7) in (3) and simplifying gives

€hm þ
_hm

s
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s
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where j ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit of a complex number. Solution
to equation (9) is given as

hmðtÞ ¼ e�txth=2ðC1 cosðx0mttÞ þ C2 sinðx0mttÞÞ

þ ð1þ jXsÞejXt

ðx2
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where a ¼ j=qC; x2
mt ¼ ðb

2
ma=sÞ and x0mt ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

mt � ð1=4s2Þ
p

Þ. The
constants C1 and C2 can be obtained using the initial thermal
boundary conditions given by (4c–d). However, for harmonic solu-
tion (t ?1), the exponential term, e�txth=2 becomes zero and hence
the constants C1 and C2 can be ignored. The harmonic response for a
thermo-mechanical excitation can therefore be given as

Hðx; tÞ ¼ ðxth þ jXÞejXt

ðx2
mt �X2Þ þ jðXxthÞ

4soa
ð2m� 1Þpj

� �
sinðbmxÞ ð11Þ

Critical examination of (11) reveals that the achievable temper-
ature amplitude for a constant value of so increases with decreas-
ing values of m which correspond to resonance. When X is equal
to the natural frequency, xn of the structure, the magnitude of
H(x, t) reaches maximum and hence ð@=@XÞð Hðx; tÞj jÞ ¼ 0. Apply-
ing this condition along with X = xn > 0 leads to

mth >
Lcph

pa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
p
� 1

q
þ 1

2
ð12Þ

where mth is the threshold value of the Fourier harmonic to achieve
resonance. It is evident from (12) that the Fourier harmonic, m at
which resonance occurs (i.e. the energy required to excite the reso-
nant modes) can be reduced by decreasing the resonant frequency
and by increasing the thermal diffusivity of the material chosen. If
S is a periodic chirp function (S = soejsin[X(t).t] where X(t) is a chirp
function), all resonant frequencies of the system within the chosen
bandwidth will be excited at a constant energy. This causes the
amplitude of vibration to drop with increasing values of xn within
the chosen bandwidth.

3. Physical significance of thermomechanical resonance

Since temperature oscillations at resonance are thermoelasti-
cally transducted to mechanical velocity response, it is essential
to achieve large amplitude of H(x, t) for small values of so. Perhaps
a better insight on the physical mechanisms associated with ther-
mally driven resonance can be obtained by analysing (11) apply-
ing quantum mechanics. At thermomechanical resonance,
X = xmt = xn, (11) reduces to

o e tS s Ω= j
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Fig. 1. Schematic of a cantilever beam subjected to periodic thermal excitation.
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