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H I G H L I G H T S

� By a second law analysis for branched flows head change coefficients are determined.
� The often neglected energy transfer between partial flows is taken into account.
� Engulfment of partial flows and its initiation in numerical solutions is analyzed.
� CFD solutions for various examples may serve as benchmark solutions.
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a b s t r a c t

Losses due to the flow through conduit components in a pipe system can be accounted for by head loss
coefficients K. They correspond to the dissipation in the flow field or, in a more general sense, to the
entropy generation due to the conduit component under consideration. When only one single mass flow
rate is involved, an entropy based approach is straight forward since the flow rate can be used as a
general reference quantity. If, however, one mass flow rate is split or two partial flow rates come together
like in junctions, a new aspect appears: there is an energy transfer between the single branches that has
to be accounted for. It turns out that this energy transfer changes the total head in each flow branch in
addition to the loss of total head due to entropy generation. Therefore, appropriate coefficients for
junctions should be named as head change coefficients. As an example, the method is applied to laminar
flows. Head change coefficients for dividing and combining flows in a T-shape micro-junction are
determined for both branches and discussed with respect to their physical meaning. For the combining
junction, the special case of engulfment, leading to enhanced mixing in micro-mixers, is also considered.
Finally, it is shown, how the newly defined coefficients can be used for the design of a flow network.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In standard text books, e.g. Munson et al. (2005), loss coeffi-
cients are introduced as a non-dimensional pressure difference

Kp ¼
Δp

ρu2
m=2

: ð1Þ

A pressure difference Δp between two cross sections ① and ②,
however, is only equivalent to a loss of mechanical energy, when the
kinetic and potential energies in both cross sections are unchanged.
For the general case including an acceleration of the flow, e.g. due to
different areas of the cross sections, the head loss coefficient should

be based on the specific dissipation φ of mechanical energy

K ¼ φ
u2
m=2

: ð2Þ

The specific dissipation is the conversion of mechanical energy into
internal energy. This process is accompanied by entropy generation,
see the following section. For incompressible one-dimensional flows
φ can be determined based on the so-called extended Bernoulli-
equation

φ12 ¼
p1�p2

ρ
þα1u2

m1�α2u2
m2

2
þgðy1�y2Þ ð3Þ

with αiu2
mi=2 as the specific kinetic energy in a cross section and

gyi as the specific potential energy. This procedure follows the
so-called indirect approach. In simple experiments, however, the
exact value of the kinetic energies cannot be determined. This is
why the kinetic energy is often approximated as u2

mi/2, i.e. αi ¼ 1 like
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in Miller (1978), for example. However, for conduit components with
extremely low losses and large changes of kinetic energy like in a
nozzle, this procedure can lead to very wrong results for the
dissipation, see Schmandt and Herwig (2011a).

Another shortcoming of the indirect approach occurs when
branched flows are considered. For the case of a dividing junction,
a flow rate _m enters the junction at cross section① and leaves it as
partial flow rates _m12 and _m13 at the respective cross sections ②

and ③, see Fig. 1(b). Since both flow rates are in direct contact, an
energy transfer occurs. For steady flows, a stream surface (inter-
face) can be identified over which energy is transferred by viscous
forces. In the Bernoulli equation, this can be expressed as a specific
diffusion rate (or stress work rate) d.

φ12�d12 ¼
p1�p2

ρ
þα1;12u2

m1�α2u2
m2

2
þgðy1�y2Þ ð4Þ

φ13�d13 ¼
p1�p3

ρ
þα1;13u2

m1�α3u2
m3

2
þgðy1�y3Þ ð5Þ

The mutual energy transfer rates are linked by the first law of
thermodynamics, i.e.

d12 _m12 ¼ �d13 _m13 ð6Þ

Existing definitions of K for junctions, see e.g. Miller (1978), Serre
et al. (1994), Sharp et al. (2010), Ramamurthy et al. (2006) are
based on the “head loss” ΔH¼ ðφij�dijÞ=g, which better should be
called a head change, see Schmandt and Herwig (2013). An energy
transfer between the branches is already mentioned in Miller
(1978), its contribution to the head change, however, cannot be
determined based on the indirect approach.

In the following section, a method will be introduced, which
permits the determination of a head change coefficient

Kij ¼
φij�dij
u2
m=2

: ð7Þ

based on the contributions of φij and dij within Kij. Here um is the
mean velocity in the reference cross section (here: ①).

2. The SLA-approach for branched flows

In order to introduce our general concept to account for a head
change, we first discuss unbranched flows. As already mentioned,
the specific dissipation

φ¼ _Φ= _m ð8Þ
for unbranched flow is accompanied by an entropy generation.
Generally entropy generation occurs in the flow and temperature
fields and thus can be determined as a scalar field variable when
the velocity and the temperature fields from a converged CFD
simulation are available. Using the entropy generation and thus
the second law of thermodynamics for the characterization of
processes is called second law analysis (SLA).

The local entropy generation rate due to dissipation alone (in
Wm�3 K) can be computed as

_S‴¼ τ!
!

: ∇ u!
T

ð9Þ

leading to

_S‴¼ μ
T

2
∂u
∂x

� �2

þ ∂v
∂y

� �2

þ ∂w
∂z

� �2
" # 

Fig. 1. Combination or division of flow rates in junctions. (a) Combining junction and (b) dividing junction.
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