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HIGHLIGHTS

e Three models considered for solution-diffusion theory for nonporous membranes.
e Solvent mass flux expressions derived for solvent-polymer membrane systems.
e Solvent flux equations can describe reverse osmosis and negative reverse osmosis.

e Solvent flow driven by pressure diffusion.
e Solvent flow driven by thermodynamic effects.
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The solution-diffusion theory for membranes is used as a basis for the formulation and consideration of
three models which can describe the mass transfer of solvents through nonporous polymer membranes.
Two types of solvent mass transfer processes are considered: the transport of solvent through a
membrane immersed in a pure solvent and the osmotic mass transfer of solvent in a solvent-solute-
semipermeable membrane system. For the first mass transfer process, the most general of these three
mass transfer models (Model III) includes both thermodynamic effects at the solvent-membrane
interfaces and pressure diffusion effects inside the membrane. Model I includes only pressure diffusion
effects, and Model II includes only thermodynamic effects at the solvent-membrane interfaces. For each
model, equations are derived for the solvent mass flux through the membrane and for the mass fraction
distribution of solvent inside the membrane. The predictions of each of the models are compared with
available mass transfer data for solvent-polymer membrane systems. A similar analysis is used to
describe osmotic effects and reverse osmosis. It is concluded that Model IIl should be the preferred

Jump balances

choice for analyzing mass transfer processes for solvents in nonporous polymer membranes.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

It is generally accepted that mass transfer through nonporous
membranes can be described by the solution-diffusion theory
(Wijmans and Baker, 1995). This theory is based on the assumption
that solutes and solvents dissolve in the membrane matrix and
subsequently diffuse through the membrane material when con-
centration and/or pressure gradients are applied across the mem-
brane. When concentration gradients along with negligible
pressure gradients are applied to a membrane, the basic theory
yields a straightforward mass transfer analysis for the membrane.
However, there are at least two different forms of the theory or
models which have been proposed to describe the effects of
significant pressure gradients on the mass transfer process across
a nonporous membrane.
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The two models [Model I (Vrentas and Vrentas, 2013) and
Model II (Rosenbaum, 1968; Rosenbaum and Cotton, 1969)] can be
illustrated by considering the transport of a solute, component 1,
and a solvent, component 2, across a polymer membrane material,
component 3. In the first model, Model |, it is assumed that there
can be gradients of both concentration and pressure and that the
diffusion fluxes of both solute and solvent can be generated by the
mass fraction gradients as well as by the pressure gradient
(Vrentas and Vrentas, 2013, p. 73). This type of behavior is
permitted by the equipresence principle of continuum mechanics
(Vrentas and Vrentas, 2013, p. 56). In general, the two external
phases can be at different pressures, and this model assumes that
there is a continuous pressure change across the membrane.
Additionally, for thin membranes, it can be assumed that the
pressure distribution is linear (Vrentas and Vrentas, 2013, p. 412)
so that there is a constant pressure gradient in the membrane.
[It is worth noting that it is the pressure gradient dependence of
the mass diffusion flux of a particular component that makes it
possible to explain phenomena such as equilibrium concentration
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distributions in sedimentation (Vrentas and Vrentas, 2013,
pp. 511-513) and in ultracentrifuges (Vrentas and Vrentas, 2013,
pp. 552-554) for the dilute component in a binary mixture.] For
Model I, there are no jumps in pressure at the fluid-membrane
interfaces because of the assumption of a continuous pressure
change across the membrane. Consequently, it follows that the
equilibrium conditions at the two external fluidl-membrane inter-
faces are not thermodynamically affected by the imposition of a
pressure difference across the membrane since there are no
pressure jumps at these interfaces. Model I has been described
elsewhere (Vrentas and Vrentas, 2013, pp. 419-422); however,
solutions for the solvent mass flux and for the mass fraction
distribution were not presented there and therefore will be
included in this paper.

A second model (Model II) has been proposed by Rosenbaum
(1968) and Rosenbaum and Cotton (1969). This model supposes
that there is a uniform pressure within the membrane equal to the
higher fluid pressure value imposed at one of the fluid-membrane
interfaces. Consequently, there must be a step change in pressure
at the other fluid-membrane interface which has the lower fluid
pressure value. At this second fluid-membrane interface, the
pressure in the membrane must of course be higher than the
pressure in the adjacent fluid phase. Since the membrane phase
and fluid phase pressures are different, the required equality of
chemical potentials at this boundary must include the effect of the
pressure change on the chemical potential relationship there. It
can be shown that the presence of a pressure discontinuity will
necessarily decrease the activity and thus the concentration of the
solvent in the membrane at this fluid-membrane interface. This
thermodynamic effect produces a larger concentration difference
across the membrane and therefore an additional pressure-
induced diffusion flux in the membrane.

It is possible to utilize the above results to propose a third
model (Model III) to describe pressure effects in a nonporous
membrane. This third model is formulated by using some of the
characteristics of both Model I and Model II. For Model II, it is
postulated that there is a continuous, linear decrease of pressure
from the higher membrane-phase pressure at one fluid-mem-
brane interface to an intermediate membrane-phase pressure at
the second fluid-membrane interface that is greater than the
lower fluid-phase pressure. There then is a step-change decrease
from this intermediate pressure to the lower fluid-phase pressure.
Diagrams showing the pressure p distributions for the three
models are presented in Fig. 1. All three models have p§ = p{'; this
result will be established in Section 2. Note that the superscripts s
and m refer to the solvent and membrane phases, respectively, and
the subscript here refers to the position in the membrane which

extends from x=0 to x=L. Model I also has pj =pJ* so that it
includes a linear pressure distribution and no step changes in
pressure. Model II has pj = p{' = p" and a step change from p]" to
pj at x=L. Model IIl includes a linear pressure distribution from p{'
to p[" and a step change from pJ" to pj at x=L.

The above three models will be used first to analyze the
membrane mass transfer process when a membrane is immersed
in a pure solvent. The general forms of the predictions of these
three models for the solvent flux and for the solvent concentration
distribution will then be compared to the general forms of the
experimental data collected by Rosenbaum and Cotton (1969) and
by Paul and Ebra-Lima (1970). The analysis presented here is
carried out at low solvent concentrations in the membrane to
facilitate the derivation of analytical results for the mass transfer
process in nonporous membranes. Consequently, the following
approximations will be used in the mathematical analysis
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where Y is the solvent mass fraction in the membrane, p™ is the
total mass density of the membrane, and V; is the specific volume
of the pure polymer (* denotes per unit mass and the superscript
0 denotes pure component). In addition, the analysis considered
here includes only viscous effects; elastic effects in the membrane
are not considered.

It is important to note that the experimental data presented in
the two papers listed above (Paul and Ebra-Lima, 1970;
Rosenbaum and Cotton, 1969) were obtained at solvent concen-
trations which are higher than the mass fractions described by
Eq. (1). Additionally, the experimental data utilize measurements
on crosslinked systems, and hence it is possible that there may be
some important elastic effects. It is assumed here that a useful
comparison can still be made between the available experimental
data and the predictions based on the low mass fraction, purely
viscous theory presented in this paper.

In addition to the analysis of solvent mass transfer for a non-
porous membrane immersed in a pure solvent, mass transfer results
will be obtained for a nonporous membrane immersed in a solvent-
solute mixture, thus allowing consideration of reverse osmosis
processes. Also, as indicated in the above discussion, the imposition
of a pressure difference across a nonporous membrane can produce
both a thermodynamic effect and a direct mass transfer effect. The
imposed pressure difference can affect the equilibrium mass fractions
at the fluid-membrane interfaces, thereby influencing the mass
diffusion fluxes through the membrane, and it can lead to a pressure
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Fig. 1. Description of three models for pressure effects in nonporous membranes.
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