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H I G H L I G H T S

� Numerical calculations of gas permeation are performed on binary composite materials.
� Wide range of composition and particle aspect ratio is explored in a s.c. lattice.
� Maxwell's equation was found to be accurate even at high loadings of inclusions.
� A simple method accounts for inclusions aspect ratio on effective permeability.
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a b s t r a c t

In studies of the permeability of composite materials, consisting of solid isometric particles A dispersed
in a polymeric matrix B, Maxwell's classical equation, rigorously valid only for very low fractional
volumes (vA) of spherical particles, is often used for data analysis up to much higher vA values.
Theoretical justification for this practice can be provided, only up to vAE0.5, by current analytical
models based on cubic lattices of congruent spheres. Replacing spheres by cubes yields a model covering
the full composition range vA¼0�1, but lacking convenient general analytical tractability. Accordingly, to
explore unrestrictedly the practical validity of the Maxwell equation, a simple cubic lattice-of-cubes
model was combined with an appropriate numerical computation tool. The results establish satisfactory
applicability of the Maxwell equation for isometric particles A, at all compositions and over a wide range
of component permeability ratios (α¼PA/PB¼0�100).

The practical applicability of the corresponding classical equation of Wiener (which extends
Maxwell's treatment to anisometric particles via the value of a single geometrical parameter AW) was
similarly explored, using appropriate model s.c. lattices of (a) unidimensionally anisometric particles
(transverse square rods of varying length) or (b) bidimensionally anisometric particles (transverse square
platelets of varying area). The computations covered the same vA and α ranges as above, as well as a
range of aspect ratios in each of the cases (a) and (b). The results obtained enable determination of values
of AW, independent of vA and α, linked directly to the aspect ratio of the embedded particles, and
demonstrate very good practical applicability of the Wiener equation (with the proper AW value) under
all conditions studied.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The description of properties of mass transport for low mole-
cular weight species in heterogeneous polymeric systems is of

great importance. The theoretical analysis of composite materials
behavior is indeed fundamental for proper material design in a
variety of different applications (Wijmans and Baker, 1995; Del
Nobile et al., 1996; Grate and Abraham, 1991). Among others,
immiscible polymer blends (Barlow and Paul, 1981) as well as
block copolymers (Lazzari and López-Quintela, 2003) are often of
interest for the opportunity they offer of combining properties of
two or more homogeneous materials. On the other hand,
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semicrystalline polymers constitute a substantial percentage of
polymers employed in many different fields (Hedenqvist and
Gedde, 1996). The aforementioned general approach is thus
obviously required for many common polymers containing
impermeable crystalline domains, such as polyethylene (PE) or
polyethylene terephthalate (PET), as well as for the analysis of
enlarged regular structures, such as poly(4-methyl-1-pentene) or
syndiotactic polystyrene (Puleo et al., 1989; Larobina et al., 2004).

In recent years, the development of nanocomposite materials,
prepared by incorporating impermeable platelets in polymeric
phases, was largely undertaken for barrier applications
(Choudalakis and Gotsis (2009)). This technology is also suitable
for the design of membranes for gas separation, with particles
highly selective for one or more gases, such as zeolites (Mahajan
and Koros, 2002) or metallic organic frameworks (Adams et al.,
2010), dispersed in the polymer phase (Aroon et al., 2010).

All these examples refer to composite materials constituted by
at least two distinct and well defined regions or domains i (of
different length scale), characterized by different values of gas
permeability Pi. The resulting permeability of the complete het-
erogeneous medium is then related to the Pi values (i¼A, B, …), as
well as to the volume fractions vi of the component phases and the
system morphology, notably the shape and geometrical arrange-
ment of the respective domains i.

The aim of this work is to develop and apply a valuable
computation tool for the description of key features of the mass
transport properties of binary composite media, consisting of
particles A dispersed in a polymer matrix B, as a function of
system composition and morphology. Numerical calculations were
thus performed to evaluate the permeability of suitable model
systems over a range of composition and of component character-
istics much wider than that accessible to previous analytical
treatments. The results were then compared with the predictions
of two major existing model equations, in order to investigate
their physical significance and range of validity, and thus confirm
and/or extend the conclusions drawn in a previous study con-
ducted along these lines (Petropoulos, 1985).

1.1. Review of some significant modeling approaches

The behavior of overall permeability P of a heterogeneous
medium involving a dispersed phase A in a continuous phase B
has been investigated by many authors. The main modeling
parameters used are (i) the permeability coefficients of the
component phases, PA and PB, (assumed to be constant for a given
permeating species, i.e. independent of the concentration of
permeant), (ii) the composition of the system, expressed as
volume fraction vA of dispersed phase A, and (iii) the shape of
the dispersed particles, as well as their arrangement in the
composite. Different expressions of the type indicated in Eq. (1)
have been developed for different system morphologies:

P
PB

¼ f ðα; vAÞ: ð1Þ

where α indicates the permeability ratio between dispersed and
continuous phase in the composite system, i.e.

α¼ PA

PB
ð2Þ

The study of composite structures and of the methods for aver-
aging gas transport properties starts from the simplest configura-
tions, in which the component phases are laminated in alternating
domains (ABAB…) parallel or normal to the direction of permea-
tion. The resulting overall permeability P is given by Eqs. (3) or (4),

respectively:

P
PB

¼ 1þvAðα�1Þ ð3Þ

P
PB

¼ 1þvA
1
α
�1

� �� ��1

ð4Þ

These equations are readily derived. Their relevance here is that
they represent, respectively, the maximum and minimum value of
P/PB obtainable for any given pair (α, vA), when different morphol-
ogies are considered for A and B phases.

For the composite materials under consideration here, pioneer
work has been carried out by Maxwell. He derived a rigorous
expression for a highly dilute dispersion of congruent spheres
(Maxwell, 1873; Barrer, 1968), wherein interparticle distances are
large enough to ensure that the permeant flow pattern around one
sphere is undisturbed by the presence of the others; which may be
written as follows:

P
PB

¼ 1þ 3vA
ðαþ2Þ=ðα�1Þ�vA

ð5Þ

The same treatment may also be applied to the 2-D problem resulting
from the dispersion of parallel congruent long cylinders oriented
transversely to the direction of permeation; which is included, as a
special case, in the general Wiener equation (Wiener, 1912; Nielsen,
1974):

P
PB

¼ 1þ ð1þAW ÞvA
ðαþAW Þ=ðα�1Þ�vA

ð6Þ

Parameter AW is a function of the arrangement and geometry of the
dispersed phase with respect to the continuous one. In particular,
AW-1 or AW¼0 lead to Eqs. (3) or (4) respectively, whereas AW¼2
or AW¼1 yield the Maxwell equation for spheres (3-D) or long
transverse cylinders (2-D), respectively.

The physical meaning of the above Maxwell 3-D and 2-D
models is most commonly considered (in accord with their
original derivation) to be limited to the range of very low
concentrations of dispersed phase. However, in practice, the said
models may be usefully applied over a substantially wider range of
vA (and used as a conservative estimate of the expected change in
permeability caused by the presence of the particles for given α
and vA, as pointed out in Petropoulos, 1985). In addressing the case
of non-dilute dispersion of inclusions, the question of their
arrangement arises. To enable analytical calculations, a regular
arrangement of congruent particles has most commonly been
adopted. For present purposes, a simple orthogonal lattice will
be considered in all cases, with a unit cell extending along each
space coordinate, in strict geometrical similarity with the shape of
the single particle. To this category belongs the case of a non-
dilute dispersion of spherical particles arranged in a simple cubic
(s.c.) lattice, as illustrated in Fig. 1, for which an extended Maxwell
expression for permeability was obtained (in the form of an
infinite series) by Lord Raylegh (1892), which was subsequently
reworked by Meredith and Tobias (1960), and presented as a
truncated series:

P
PB

¼ 1þ3vA
αþ2
α�1

�vA�
k1v

10=3
A

ðαþð4=3ÞÞ=ðα�1Þ�k2v
7=3
A

�k3ðα�1Þv14=3A

αþð6=5Þ

 !�1

ð7Þ
where k1¼1.315, k2¼0.409 and k3¼0.016.

It is worthwhile to note that the applicability of results similar
to that represented by Eq. (7) is restricted to vA values sensibly
below that (vA,max) imposed by the closest possible packing of the
particles in each particular arrangement. The cases of congruent
spherical, or transverse long cylindrical, particles arranged in
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