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HIGHLIGHTS

e An iterative algorithm for simultaneous design and control is presented.

e Disturbances are treated as random time-dependent bounded perturbations.

e Robust feasibility and stability analyses are introduced in this method.

e The algorithm is tested with a ternary distillation system.

e The method is a practical tool for optimal design of systems under uncertainty.
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This paper presents a new methodology for the optimal process and control design of dynamic systems
under uncertainty. Robust feasibility and stability analyses are incorporated within the proposed
methodology to ensure process dynamic operability and asymptotic stability. These analyses are
formulated as convex mathematical problems; thus, the present approach is computationally attractive
since it does not require the solution of an MINLP to evaluate dynamic feasibility and stability as it has
been proposed by recent dynamic optimization-based methodologies. A norm-bounded metric based
on Structured Singular Value (SSV) analysis is employed to estimate the worst-case deviation in the
process constraints in the presence of critical realizations in the disturbances. The robust stability test
is based on Lyapunov theory and guarantees process asymptotic stability. Accordingly, the optimal
process and control design alternative obtained by the method proposed here is dynamically feasible
and asymptotically stable since it accommodates the most critical realizations in the disturbances.
A ternary distillation system featuring a rigorous tray-by tray process model is used to illustrate the

application of the proposed method.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Integration of process design and control, also known as
simultaneous design and control, has emerged as an attractive
alternative to overcome the limitations imposed by the traditional
sequential design approaches. The key in integration of design and
control is to obtain an optimal design by conducting a steady state
analysis, which ensures that the design meets its goals at steady-
state at minimum capital and operating cost, combined with a
controllability analysis, which seeks for a suitable control structure
that can meet the process operational and performance specifica-
tions in closed-loop. This activity is not a simple task to perform
since the steady-state analysis and the evaluation of the system’s
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dynamic performance may have conflicting objectives (Luyben,
2004). Despite the efforts that have been made in this field, a
unified framework for simultaneous of design and control with
embedded robust stability criteria is not currently available.
Number of approaches that address the integration of design and
control have been attempted in the literature, e.g., controllability
index-based methods (Lenhoff and Morari, 1982; Palazoglu and
Arkun, 1986, 1987), dynamic optimization-based methods (Bahri
et al., 1997; Bansal et al., 2002; Kookos and Perkins, 2001; Malcolm
et al., 2007; Mohideen et al., 1996a; Swartz, 2004), robust metrics-
based methods (Hamid et al., 2010; Francisco et al., 2011; Munoz
et al.,, 2012; Gerhard et al., 2005, 2008; Lu et al., 2010; Ricardez-
Sandoval et al., 2009a; Ricardez Sandoval et al., 2008) and recently,
probabilistic-based methods (Ricardez-Sandoval, 2012). Review
articles on integration of design and control are available else-
where (Ricardez-Sandoval et al., 2009b; Seferlis and Georgiadis,
2004; Sakizlis et al., 2004; Yuan et al., 2012).
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The evaluation of multiple process design and control structure
alternatives is essential to determine an optimal design. While
structural changes in the process design and the control structure
can be incorporated by adding integer decisions in the analysis, the
addition of integer variables increases the problem's dimensionality
thus making it computationally intensive or even prohibitive for
large-scale industrial applications. To date, a few simultaneous
design and control methods have included structural decisions in
their formulations. A subset of those methods were developed using
controllability metrics (Alhammadi and Romagnoli, 2004; Luyben
and Floudas, 1994; Seferlis and Grievink, 2001). While simple to
implement, those methods specified an optimal design that may
only be valid at steady-state or around nominal operating point.
Thus, those designs may become infeasible or unstable when the
effect of disturbances moves the system away from its nominal
operating point. Formal dynamic optimization formulations that
include structural decisions are also available (Bahri et al., 1997;
Bansal et al., 2002; Kookos and Perkins, 2001; Mohideen et al.,
1996a, 1996b; Sakizlis et al, 2004). Those methods propose an
iterative decomposition framework, composed of a dynamic flex-
ibility analysis and a dynamic feasibility analysis, to attain the
optimal process design under the effect of disturbances and model
parameter uncertainty. An overview of the iterative algorithm
proposed by those methods is presented elsewhere, e.g., see Fig. 1
in Sakizlis et al. (2004). In those methods, the dynamic flexibility
and feasibility analyses are formulated as complex optimization
problems. Also, the optimal design specified by those approaches is
obtained under the assumption that the disturbance dynamics
follow a user-defined time-dependent function with unknown
(critical) parameters. Hence, process constraints may be exceeded
when the process is subject to time-trajectories in the disturbances
that do not follow the disturbance dynamic model used by the user
to assess the optimal design.

The evaluation of the process asymptotic stability in the presence
of disturbances is another fundamental aspect in simultaneous
design and control. It has been shown that optimal design and
control schemes specified by methodologies that did not account for
a formal stability test have been found to be unstable (Mohideen
et al., 1997). To the authors’ knowledge, very few methodologies that
consider structural changes in the design have included a stability
analysis in their formulations, e.g., Malcolm et al. (2007), Mohideen
et al. (1996a, 1997) and Sakizlis et al. (2004). In general, the stability
analysis is introduced as a set of constraints in the dynamic
feasibility analysis, usually posed as an MINLP. Thus, the addition
of the stability criterion within the feasibility test makes the
evaluation of the MINLP formulation even more challenging, espe-
cially for large-scale complex systems.

The aim of this paper is to present a new simultaneous design
and control methodology that accounts for structural decisions in
the analysis. The proposed methodology includes a dynamic flex-
ibility analysis, a robust dynamic feasibility analysis, and nominal
and robust stability analyses. Two new formulations are developed
here to evaluate dynamic feasibility and stability. The new formula-
tions, based on methods borrowed from robust control theory, are
formulated as convex mathematical problems for which efficient
optimization algorithms exists. This represents an attractive feature
in the present approach since previous methodologies have eval-
uated the system's dynamic feasibility and stability by solving an
intensive MINLP formulation. The robust dynamic feasibility and
stability formulations presented in this work assume that distur-
bances are random time-dependent perturbations bounded by
upper and lower limits. This disturbance description is more general
than that used by previous methods, i.e., the present method does
not require the specification of a disturbance time-dependent
function with critical parameters. Thus, the robust feasibility and
stability formulations included in the present methodology enable

the specification of an optimal design that can maintain the dynamic
operability of the system feasible and stable in the presence of
critical realizations in the disturbances.

A few methodologies for the integration of design and control of
large-scale systems have been proposed by one of the authors
(Ricardez-Sandoval et al., 2009c, 2010, 2011). Those methodologies
assumed that the process flowsheet and the control structure
remained fixed during the calculations, i.e., those methods only
accounted for the sizing of the process units and the specification of
the controller tuning parameters for the pre-established process
flowsheet and control structure, respectively. The present approach
represents an improvement to the previous methods since, in
addition to the specification of the optimal size of the units and
controller tuning parameters, structural decisions in both the
process flowsheet and the control structure are explicitly accounted
for in the analysis. This feature enables the specification of highly
integrated and economically attractive systems that those obtained
with the previous methods proposed by the corresponding author.
In addition, the iterative decomposition framework proposed in this
study is new and includes formulations that have not been pre-
viously considered for simultaneous design and control methods
that account for structural decisions in the analysis.

This paper is structured as follows: Section 2 presents the
simultaneous design and control methodology proposed in this
work. Section 3 introduces a ternary distillation system, which is
used as a case study to illustrate the benefits of the present
methodology. The design obtained by the present approach is
presented in this section and compared to those obtained by a
sequential process design strategy and a set of dynamic flexibility
analysis. Conclusions are stated at the end of this article.

2. Simultaneous design and control design methodology

A schematic of the iterative decomposition algorithm proposed
in this work is presented in Fig. 1. As shown in this figure, the
algorithm includes a dynamic flexibility analysis, a robust feasi-
bility analysis and two stability analyses. Definitions, assumptions
and the algorithm initialization are described next followed by the
presentation of each of the analyses included in the present
methodology.

Definitions, assumptions and initialization

The variables used to describe the present methodology are as
follows:

x(t) e R™: n, time differential state variables of the system.
y(t) e R n, output (controlled) time-varying variables of the
system.

p(t) e R™: n, manipulated (time-varying) variables available
for control.

d(t) e R™: ny time-varying disturbances affecting the system.
c(t)e R™: n. time differential state variables of the control
algorithms included in the control scheme.

ne R 1, process design variables that cannot be adjusted
during the operation of the system.

veR!™: n, process set points at steady-state. This vector
includes the controlled variables’ set points (yse R'*™) and
the nominal (steady-state) values in the manipulated variables
(Prom € RT™).

§emixnc: ng controllers’ tuning parameters, e.g., the gain and
the time constant in a PI controller.

o e {0, 1}1*": vector of n,, binary variables associated with the
process flowsheet topology.

K € {0, 1}"*™: vector of n, binary variables associated with the
topology of the control system.
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