
An analytical model to describe the motion of a low concentration
of spherical particles within a Newtonian fluid

J.M. Wilms a,n, G.J.F. Smit b, G.P.J. Diedericks b

a Mechanical and Mechatronic Engineering, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa
b Division of Applied Mathematics, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa

H I G H L I G H T S

� Closure of the fluid–solid drag with a
Representative Unit Cell
model (RUC).

� Derivation of a particle viscosity
term for modelling of particle–parti-
cle interaction.

� Numerical and physical settling tube
experiments for validation of
the model.
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a b s t r a c t

In this paper a particle–particle interaction term is derived and incorporated into the two-fluid analytical
model of Smit et al. (2011). This model was developed for low concentration spherical particle motion in
a Newtonian fluid and the inclusion of particle interactions is required for instances where particles
collide. Moreover, such a modification serves as a first step towards the modelling of higher particle
concentrations. A brief overview of the analytical derivation of the model by Smit et al. (2011) is included
for clarity and a detailed derivation of the newly developed particle–particle interaction term is given. In
this derivation, particle interaction is described using impulse mechanics with a collision sphere model
in a centre of mass reference frame for collision detection. The updated model is included into an existing
Fortran 95 program and validated with experimental data obtained by the authors from camera- and
settling tube procedures.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The motion of discrete particles within a Newtonian fluid is
frequently modelled by treating the combination of phases as a
single fluid phase or by evaluating the constituent phases as
individual fluids. Alternatively, two-phase motion is described by
modelling each of the discrete particles with Newton's second law
and then tracking their individual motions. The first two methods
constitute the classical Euler approach and require the specifica-
tion of an empirical particle viscosity which places a limitation on

the physical analysis of the particle motion. The latter, Discrete
Element Method (DEM), has become more popular with the
increase in computational resources but is, however, expensive
in this regard and often dependent on parallel computing over
multiple processors.

The empirical nature of the mixture- or the two-fluid approach
and the computational cost of tracking schemes are avoided in the
method described here. The model derived by Smit et al. (2011)
uses the Navier–Stokes mass- and momentum conservation equa-
tions to impart the motion of the fluid but attempts to preserve
the discrete nature of the particles by constructing their mass- and
momentum conservation equations on the basis of Newton's
second law. Instead of tracking the particles, the equations derived
for a single particle are averaged over a Representative Elementary
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Volume (REV). The REV is a volume which should contain both
continuum and particle phases, and should be representative of
the entire domain. More information on the criteria to which an
REV should adhere may be found in the work of Whitaker (1967)
and Bachmat and Bear (1986). The original REV integration
procedure, applied in the averaging of the fluid phase, is, however,
substituted with summation in this work to account for the
particles' disjoint nature.

Averaging of the momentum conservation equations yields
surface integral terms. The integral terms over the phase-
separating face embody momentum transfer between the phases.
They emerge in each of the phases' momentum conservation
equations identically but with opposite sign, thus ensuring that
momentum is conserved over the entire domain. These terms are
closed with a Representative Unit Cell (RUC) model, which is a
rectangular volume of minimum dimensions into which the
geometric properties of the REV may be embedded. The RUC
was first developed by Du Plessis and Masliyah (1988) and has
been modified here to incorporate the relative slip velocity.

Momentum transfer may, however, also occur between the
particles themselves, due to particle–particle collisions. Interaction
of this type resides in the integral term over interfaces which are
established when particles come into close proximity of each
other. It is consequently isolated to the particle phase momentum
conservation equation. The aforementioned interaction was not
included by Smit et al. (2011) and is described here using impulse
mechanics with a collision sphere model in a centre of mass
reference frame for collision detection.

The model is coded in Fortran 95 and the numerical velocity
data, yielded, is validated with empirical data from settling-tube
experiments.

2. Two-phase flow model

The two-phase flow model for low concentration spherical
particle motion through a Newtonian fluid excluding particle
interaction was discussed in Smit et al. (2011). A brief overview
is given here of the averaging procedures used and a detailed
discussion is presented for the derivation of a particle–particle
interaction term.

2.1. The fluid phase

The REV averaging procedure for fluid quantities, ψ , which are
assumed to be finite, continuous and differentiable is given by

ψ f ¼
1
Uf

∭Uf
ψ dUf ; ð1Þ

where Uf is the volume of the fluid phase within the REV. The
application of the averaging procedure, given by Eq. (1), yields the
following averaged momentum conservation equation for the fluid
phase:

ρf
∂ϵf vf

∂t
þ ρf∇ � ϵf vf vf

� �
¼ ρf gϵf�ϵf∇pf þ μf∇ � ϵf∇vf

� �
þ I fs; ð2Þ

where the drag force between fluids and solids is summarised in,
I fs, as

I fs ¼
1
Uo

Z
Sfs

� ~pf 1 þ τ
f

� �
� nf dS: ð3Þ

In Eqs. (2) and (3), ρf is the density of the fluid phase; vf and vs are
the average velocities of the fluid- and solid phases, respectively; g
is the gravitational acceleration; and μf is the dynamic viscosity of
the fluid. The average fluid pressure is denoted by pf and the fluid
volume fraction is the ratio of fluid-to-total volume, given by,

ϵf ¼Uf =Uo. The shear stress between the fluid and the solid is
denoted by τ

f
and the integral is taken over the fluid–solid

interface, Sfs.
The averaged mass conservation equation for the fluid phase is

given by

∂ϵf
∂t

þ ∇ � ϵf vf ¼ 0: ð4Þ

2.2. The solid phase

The solid phase is composed of discrete, solid, rigid particles
which are, apart from when they collide, completely surrounded
by the fluid phase. In consideration of the solid phase's disjoint
nature, the averaging procedure of Eq. (1) is adapted to

γs ¼
1
Us

∑
n

i ¼ 1
γiνi; ð5Þ

where Us denotes the combined solid volume which consists of all
solid particle volumes, νi, within the REV whereas γi is a property
associated with particle i and is defined at its centroid. The
averaged mass conservation for the solid phase is given by

∂ϵsρs
∂t

þ ∇ � ϵsvs

� �
¼ 0; ð6Þ

where ρs is the density of the solid phase, the solid volume fraction
is given by ϵs ¼ Us=Uo, and the average solid velocity is denoted by
vs.

The momentum conservation of a single particle is given by

mi
dvi

dt
¼mig þ∑F ; ð7Þ

where mi is the mass of particle i; vi denotes its velocity and the
last term in Eq. (7) represents all external forces apart from
gravity, g . Summation of Eq. (7) over all particles in an REV and
subsequent application of Eq. (5) yields the following for the
averaged solid phase momentum equation

ρs
∂
∂t
ϵsvs þ ρs∇ � ϵsvsvs ¼ ϵsρsg�I fs þ

1
Uo

Z
Sss

s
i
� ni dS; ð8Þ

The particle stress is denoted by si. Following Enwald et al. (1997),
Crowe et al. (1998), Soo (1990), and Kleinstreuer (2003) the
particle stress is assumed to be a linear combination of stress
induced by the surrounding continuum, sf , and stress instigated
by neighbouring particles, sss

s
i
¼ s

f
þ s

ss
: ð9Þ

The particle induced stress may in itself be decomposed in a
frictional and a kinetic-collisional component (Enwald et al., 1997;
Dartevelle, 2003). For dilute flows it is assumed that the frictional
component may be dropped and it follows that the particle stress
may be written as

s
i
¼ s

f
þ s

kc
; ð10Þ

where skc denotes the kinetic-collisional shear stress. Following
Enwald et al. (1997) and Dartevelle (2003) this is composed of a
pressure and a shearing component. For the purpose of the current
work it is assumed that the small grain size and dilute concentra-
tions yield a particle pressure which, when compared to the shear,
may be considered negligible. It follows that the particle shear
stress is given by

s
i
¼�pf 1 þ τf þ τ

kc
: ð11Þ

In Eq. (11) the fluid stress has been decomposed into a pressure, pf,
and a shearing component, τ

f
, whilst τ

kc
denotes the kinetic-

collisional particle shear stress. The latter stress can physically
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