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HIGHLIGHTS

e A new LBM scheme (TF-LBM) solving equations of fluid phase in two-fluid model.

e TF-LBM calculates at the level of TFM, favoring large-scale simulation.
e Combination of discrete particle method and TF-LBM.
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A two-fluid lattice Boltzmann method (TF-LBM) is proposed for simulation of particle-fluid flows. The
fluid phase is solved by using a modified LBM scheme, which combines the He-Shan-Doolen and the
Cheng-Li schemes and, accordingly, restores to the fluid phase equations of the two-fluid model (TFM)
by adding additional source terms. While for the sake of simplicity, the motion of particle phase is
tracked by following the hard-sphere discrete particle model (DPM). Three test cases, including solid—
liquid sedimentation, solo particle sedimentation in air and air-solid two-phase flow in a vertical pipe,
are simulated with this new method. The results are compared with previous literature results and
experimental data, showing fair agreement.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Particle-fluid two-phase flow is characterized with nonlinear,
non-equilibrium phenomena and multi-scale dynamic structures.
To study its complex behavior, various computational fluid
dynamics (CFD) methods have been proposed, such as the two-
fluid model (TFM) (Anderson and Jackson, 1967; Gidaspow, 1994),
discrete particle model (DPM) (Goldschmidt et al., 2004; Tsuji
et al., 1998) and the lattice Boltzmann method (LBM), in which
LBM has been rapidly developed (Benzi et al., 1992; Chen and
Doolen, 1998; He and Luo, 1997; Higuera et al., 1989; Succi, 2001;
Succi et al.,, 1993; Tang et al., 2005) with its merits of natural
parallelization and easy dealing with complicated boundaries.

LBM has been applied successfully in simulating many problems,
especially for single phase flows. In recent years, some LBM-based
multiphase models have also been proposed, including the Eulerian—
Eulerian approach (such as the color model (Gunstensen et al., 1991;
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Tolke et al, 2002), the pseudopotential model (Sbragaglia et al,
2007; Shan and Chen, 1993, 1994), the free-energy model (Swift
et al, 1995) and so on (Inamuro et al,, 2002)) and the Eulerian-
Lagrangian approach (Iglberger et al., 2008; Ladd, 1994; Wang et al.,
2010a). However, most of these multiphase models were presented
for small-scale simulation at the level of individual particles, and
hence, not suitable for large-scale simulation of industrial multi-
phase reactors.

TFM is an Eulerian-Eulerian method which treats both the fluid
and the particle phases as fully interpenetrating continua. It
describes the collective behavior of large amount of particles at a
level much coarser than individual particles, and hence demands
less computational capacity. Thus, TFM is widely accepted to be
suitable for industrial scale simulations (Gidaspow, 1994).

To realize fast simulation of industrial two-phase flow,
Sankaranarayanan and Sundaresan (2008) and Wang and Wang
(2005) have tried to combine the advantages of both LBM and TFM
by using LBM to solve the whole set of TFM equations. It should be
noted that the original LBM was proposed mainly to solve the
Navier-Stokes (N-S) equations. The fluid phase equations of TFM
differ from the N-S equation in both mass and momentum
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equations. By introducing the volume fraction of fluid phase and
the interphase drag force in the momentum equations,
Sankaranarayanan and Sundaresan (2008) modified the external
force term of LBM, while Wang and Wang (2005) added a
correction factor to the pressure gradient in LBM equations. The
two-phase densities used in these two lattice Boltzmann schemes
are both partial densities, i.e. e,p;, where ¢, refers to the volume
fraction of phase k, and p, its density. Compared to the use of
phase density, this makes the construction of the scheme easier in
mathematics. However, in a typical gas-solid riser flow, the
variation of solid volume fraction may range from 0 to 1—e&yy,
where &,; is the minimum fluidization void fraction. Such a big
variation may violate the assumption of the incompressible or
weakly compressible fluid in LB scheme.

If one uses the phase density instead, the main problem to be
solved is the source terms encountered in the continuity and the
momentum equations, owing to the difference between TFM and
N-S equations. There are several methods widely cited in litera-
ture to deal with source terms (Guo et al., 2002a; He et al., 1998;
Ladd and Verberg, 2001; Luo, 1998; Shan and Doolen, 1995; Shan
and Chen, 1993). As analyzed in Guo et al. (2002a), among those
methods, the He-Shan-Doolen scheme (He et al., 1998) and the
Guo-Zheng-Shi scheme (Guo et al., 2002a) exactly restore the N-S
equations of momentum with extra terms added in LBM. However,
how to deal with additional source terms in the continuity
equation is not addressed in these literatures. Recently, Cheng
and Li (2008) proposed a new scheme to introduce unsteady, non-
uniform source terms into LBM and they found it allows adding an
arbitrary source term to the continuity equation besides introdu-
cing unsteady and non-uniform body forces into momentum
equations. Both their multi-scale analysis and simulation results
show that this new scheme can guarantee the accuracy within
incompressible limit. However, the complete use of this new
scheme is implicit and needs iterations.

Both the fluid and the particle phases can be resolved based on
the continuum equations of TFM, as were the cases in
Sankaranarayanan and Sundaresan (2008) and Wang and Wang
(2005). On the other hand, various discrete simulation methods,
such as DPM, are good alternatives for describing motion of
particles, where the Lagrangian trajectories of particles are deter-
mined by following Newton's laws of motion as well as collisions
rules (Hoomans et al., 1996; Kawaguchi et al., 1998; Tsuji et al.,
1993, 1984). In particular, the rapid development of coarse-grained
approaches such as the multiphase particle-in-cell (MPPIC) model
(Snider, 2001; Snider et al., 1998) has attracted much research
interest, in the sense that the huge amount of particles can be
replaced with much less parcels so that the computational loading
is even lower than that of conventional TFM simulations. In
addition, the massively parallel computing with GPU technology
also helps to boost the development of Lagrangian methods (Chen
et al., 2009; Xiong et al., 2012). As shown by Xiong et al. (2012),
LBM shows a strong scalability of multi-GPU implementation:
even with 600 GPUs, the computing capacity still has a linear
relationship with the number of GPUs. This makes that LBM has a
better performance in large scale simulation than the conventional
CFD method. And this is why we tend to choose LBM to realize fast
simulation of industrial two-phase flow reactors.

This work aims at fast simulation of large-scale particle-fluid
systems. To this end, we propose a two-fluid lattice Boltzmann
method (TF-LBM) featuring LBM solution at the level of TFM. To be
consistent with TFM in terms of both continuity and momentum
equations and, at the same time, to be explicit in time for the
sake of parallel computing, we combine and modify the LBM
schemes of Cheng-Li (Cheng and Li, 2008) and He-Shan-Doolen
(He et al., 1998) to solve the fluid phase equations of TFM; whereas
the particle phase is resolved with DPM for the sake of easy

implementation as a first attempt. It should be noted that the
other discrete simulation methods for particles, such as MP-PIC,
can also be easily implemented under the same framework.

The article is organized as follows: First, the detail of the TF-
LBM scheme is presented in Section 2; then, for validation
purposes, three typical cases, including solid-liquid sedimenta-
tion, solo particle sedimentation in air and air-solid two-phase
flow in a vertical pipe, are simulated with this new scheme in
Section 3; finally, the main conclusion is presented.

2. Model
2.1. LBM for fluid phase

The TFM equations for the fluid phase have the following form
(Gidaspow, 1994):
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Here, ¢, pf and p denote the void fraction, the fluid density and
the fluid pressure, respectively; u and T denote the fluid velocity and
the fluid stress tensor, which is calculated by T = yf[Vqu(Vu)T]; F,4
denotes the interphase interaction force, yf is the fluid viscosity and
g the gravity acceleration.

The TFM equations for the fluid phase can be reformulated in
forms of modified N-S equations with additional source terms
accounting for their difference, as follows:
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where S and S;; are the source terms in the continuity equation
and the momentum equation, respectively, the pressure p will be
calculated by the equation of state p = pfcg and
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In this work, we restrict our discussion to 2D configuration,
while the 3D cases can be solved with similar approach. For the 2D
LBM scheme, we start our work by using D2Q9 model with
external force (Qian et al., 1992), as follows:
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where f;(X,t) is the distribution function of direction i at local x
and time t, 7 is the dimensionless relax time and F; denotes the
external force term, which mainly includes the drag force and
gravity for a particle-fluid two-phase flow. And the sound speed
¢s =(+/3/3) for D2Q9 model. Here the equilibrium function is
calculated exactly following the formula of Qian et al. (1992),
which is f*? = pau[1+(e; - u/c2)+((e; - w)? /2cH)—(u?/2c2)], and e; is
the discrete velocity, o; is the weight coefficient, As Qian et al.
(1992) has proved, Eq. (7) corresponds to the N-S equations. To
account for the difference between the fluid equations of N-S and
TFM, we modify Eq. (7) by attaching an additional term as in
Cheng and Li (2008), such that
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