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H I G H L I G H T S

� Mass transfer in high Schmidt number bubbly flows is found using a multiscale method.
� A boundary layer model is used for the mass transfer next to the bubbles.
� A finite volume method is used for the mass transfer in the rest of the flow.
� A comparison with experimental results and correlations shows good agreement.
� Using this multiscale approach results in significant reduction in computational cost.
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a b s t r a c t

A multiscale approach for simulations of high Schmidt number mass transfer from bubbles into liquids is
validated by detailed comparisons with experimental results. The approach is based on an embedded
analytical description of the mass boundary layer next to the bubbles surface, coupled with a finite
volume method for the rest of the domain. Two classes of bubbles are examined: Taylor bubbles in a pipe
and freely rising bubbles. For the first class an axisymmetric domain is used, while for the latter a fully
three-dimensional domain is used to capture the unsteady manner of a rising bubble. We also perform
calculations of non-deformable freely rising bubbles for which we compare the computational results
with analytical and semi-empirical correlations as well as experimental results from other authors. Mass
transfer computations using the embedded analytical description approach show good agreement with
the experimental results and the correlations. Based on the ratio of the thickness of the mass boundary
layer to the grid size used to resolve the fluid flow we estimate that the use of the presented approach
reduces the computational cost at least by one or two orders of magnitude, specially when applied in
simulations of fully three-dimensional flows.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most important applications of bubbly flows is in
bubble columns (Deckwer, 1992; Furusaki et al., 2001). Their
structure and operations are simple, but predicting their perfor-
mance can be difficult. Computational models cannot at the
present time resolve the complete flow field fully and it is there-
fore necessary to rely on subgrid models for unresolved scales.
Such models have traditionally been constructed by scaling
analysis and experimental correlations, but as Direct Numerical

Simulations (DNS) of the motion of a large number of bubbles
in turbulent flows become more commonplace (Bolotnov et al.,
2011; Esmaeeli and Tryggvason, 2005; Lu et al., 2005; Lu and
Tryggvason, 2007, 2008; Tryggvason et al., 2011), more accurate
and universal closure models are likely to be developed. However,
the final outcome of a computational model of a bubble column is
mass transfer and chemical reactions, not just the fluid flow and
the bubble motion. Subgrid models are therefore also needed for
those processes. DNS of mass transfer are, so far, very limited and
fully resolved results are only available for single bubble or two-
dimensional flows. The reason is that mass transfer in liquids is
much slower than the momentum transfer so that a mass
boundary layer near the surface of the bubbles is much thinner
than the momentum boundary layer and the resolution require-
ment of DNS is set by the number of grid points needed to resolve
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the mass transfer rather than the fluid flow. This can increase the
number of grid points needed for a given problem by a factor of a
hundred to a thousand or more. For a single bubble several
authors have computed the mass transfer, either using body fitted
grids where the grid points can be concentrated near the bubble
surface (Figueroa-Espinoza and Legendre, 2010; Jung and Sato,
2005; Mao et al., 2001; Ponoth and McLaughlin, 2000) or using
regular fixed grids (Hassanvand and Hashemabadi, 2012; Hayashi
and Tomiyama, 2011; Onea et al., 2009; Wang et al., 2008).
Computations with multiple two-dimensional bubbles and reac-
tion (Koynov et al., 2005; Radl et al., 2008) have been done by
using finer grid for the mass conservation equations than the fluid
flow equations, but doing so increases the cost significantly,
particularly for fully three-dimensional systems.

In the absence of reactions, the mass transfer is a relatively
simple problem, except for the disparity in scale with the fluid
flow. It is well described by a single scalar advection–diffusion
equation and for simple velocity fields the mass distribution will
generally exhibit a simple structure. In Aboulhasanzadeh et al.
(2012) we introduced a multiscale strategy where we use an
embedded analytical description to follow the evolution of the
mass distribution near the bubble surface and a regular conserva-
tive finite volume method for the evolution away from the bubble.
The method is based on a simple boundary layer description of the
mass transfer near the surface and was shown to capture both the
structure of the mass distribution and the transfer of mass from
the bubble to the liquid very well. The accuracy was established by
comparing results using this method with simulations where the
mass transfer was computed using grids that were sufficiently fine
so the mass transfer was accurately resolved. This approach did,
however, restrict the comparison to moderate Schmidt numbers
ðOð10ÞÞ and two-dimensional flows. Subscale models to fill the
gaps between the length and time scales of fluid flow and mass
have also been presented by Booty and Siegel (2010) and Bothe
et al. (2011).

Here we continue to test the accuracy of this approach by
conducting detailed comparisons with experimental results spe-
cifically designed to validate the method for high Schmidt number,
Sc¼ 8260, and high Reynolds number, Re≅350. We use an axisym-
metric code for simulating Taylor bubbles in a narrow pipe and a
3D code for simulations where axisymmetry is not a feasible
assumption. Additionally, we compare the results for freely
moving non-deformable bubbles with analytical, semi-empirical
correlations and experiments from other authors for Reynolds
number ranging from 20 to 110 with Sc¼100 and 1000.

2. Computational approach and multiscale model

2.1. Numerical method

Direct Numerical Simulations of multi-bubble systems are
almost exclusively done using the one-fluid form of the Navier–
Stokes equations. In this approach, one set of governing equations
is solved everywhere, using a regular structured grid, but the
material properties, density and viscosity, are set based on an
indicator function that marks the different fluids and is advected
by the flow. The fluid equations are generally integrated in time
using a projection method and a finite volume or finite difference
approximations for the spatial derivatives. The indicator function
can be advected using several different techniques, such as the
volume of fluid (VOF) or level set methods, but here we use the
front tracking method originally introduced by Unverdi and
Tryggvason (1992), where the boundary between the different
fluids is marked by connected marker particles moving with the
flow. The indicator function is then constructed from the location

of the marker points. The markers are also used to find the surface
tension. For a more detailed description of the method, see
Tryggvason et al. (2001, 2011), and for its use for DNS of bubbly
flows see Bunner and Tryggvason (2002a, 2002b, 2003), and
Lu and Tryggvason (2008), for example.

2.2. Multiscale model

The primary difficulty in numerical simulations of mass trans-
fer from bubbles in most liquids is the slow diffusion of mass,
compared with the diffusion of momentum, which results in a
mass boundary layer that is thin compared to the momentum
boundary layer at the bubble surface. However, since the mass
transfer from the bubbles is proportional to the normal gradient of
the concentration of dissolved mass, the boundary layer must be
resolved sufficiently well so that the gradient can be computed
accurately. A brute force approach would require a very fine
resolution that is generally impractical if the intend is to follow
the motion of many bubbles. The boundary layer does, however,
have a very simple structure and in Aboulhasanzadeh et al. (2012)
we showed that its evolution can be accurately captured by a
boundary layer description where a parabolized advection–diffu-
sion equation is solved by a simple integral method. Thus, we solve
the advection–diffusion equation for the evolution of the mass
concentration f by splitting it up into two parts. Away from the
bubble surface we solve

∂f
∂t

þ ∇ � ufð Þ ¼D∇2f ð1Þ

with an additional sink term, as discussed in Aboulhasanzadeh
et al. (2012), using a conservative finite volume scheme. Close to
the interface we solve a parabolized version of Eq. (1) which
provides a source term when the boundary layer grows over a
certain limit. Here, we compare the results from the model with
experimental results for two different types of bubbles, Taylor
bubbles and oscillating three-dimensional bubbles. For the Taylor
bubbles we use an axisymmetric code to compute the bubble
dynamics in a cylinder, while for the oscillating bubbles, where the
axisymmetric assumption is not feasible, we use a version of the
code written for fully three-dimensional domains. In the following
subsection the multiscale model is explained first for the axisym-
metric and then for the three-dimensional simulation.

2.2.1. Axisymmetric model
For the boundary layer in the case of axisymmetric flow we

define the zeroth-moment of the mass concentration by

Max
0 ¼

Z δ0

0
rf dn ð2Þ

here n is the coordinate normal to the bubble surface, r is the
radial distance from the axis of symmetry, and the upper bound δ0
is the boundary layer limit selected so that it is generally larger
than the thickness of the boundary layer δ.

To extract the boundary layer equation we write Eq. (1) in a
control volume form for a small segment of the mass boundary
layer as shown in Fig. 1:

∂
∂t

ðrf dn dsÞ−unrf dsþ unrf þ
∂ðunrf Þ
∂n

dn
� �

ds

−usrf dnþ usrf þ
∂ðusrf Þ

∂s
ds

� �
dn

¼−D r
∂f
∂n

� �
n ¼ 0

dsþ D r
∂f
∂n

� �
n ¼ dn

ds; ð3Þ

in which we have neglected diffusion terms in the tangential
direction as well as all curvature effects. Assuming α to be a
Lagrangian marker (and a constant at each front marker point),
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