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A U T H O R - H I G H L I G H T S

� We test a novel version of DQMOM for dense multiphase flows.
� We estimate the order or magnitude of the diffusivity used in the model.
� We conduct a sensitivity analysis on the diffusivity.
� We model the segregation dynamics of polydisperse fluidized powders using the model.
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a b s t r a c t

Computational fluid dynamics (CFD) may be a useful design tool, provided that the mathematical models
that we solve with it capture and describe well the most important features of the systems of interest. For
fluidized beds, one of these features is the polydispersity of the powders: particles differ in size and alter
their size distribution in time and space continuously. To model this key phenomenon, one needs to solve
a population balance equation, that is, an equation that governs the evolution of the size distribution. The
direct quadrature method of moments (DQMOM) allows doing so in commercial CFD codes at relatively
low computational cost. This technique, successfully employed for describing dilute multiphase flows of
particles that share the same velocity, still needs testing in the context of dense multiphase flows. Dense
polydisperse fluidized powders can segregate or mix, depending on the process operating conditions,
and to describe these phenomena one needs to let particles move with different velocities. In this work
we use a recent version of DQMOM that has this feature: each quadrature class is advected with its own
velocity. The transport equations of this model feature a diffusive-like contribution that allows the
powders to mix at the particle length scale. We discuss how to assign a value to the diffusion coefficient
and we carry out a sensitivity analysis on the latter; to do so, we simulate the mixing of powders initially
segregated using different values for the diffusivity. Successively, after having estimated a suitable value
for the latter, we simulate the system dynamics under conditions that should promote segregation,
validating the results of the simulations experimentally.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Polydisperse multiphase systems are composed of a continuous
phase (a gas or a liquid) within which other discontinuous phases are
dispersed (particles, droplets or bubbles); each discontinuous phase is
composed of elements continuously distributed over velocity and size,
and possibly other properties, such as density. Even if virtually every
industrial plant contains units that treat these systems (e.g., fluidized
beds, bubble columns and crystallizers), designing them is still subject

to great uncertainties. This is because such systems undergo numerous
physical and chemical phenomena that occur concurrently: chemical
reactions take place, usually implicating all the phases and affecting
their properties; also, elements of the discontinuous phases can break
into subelements or aggregate, while new elements may nucleate. The
behavior of the units and the quality of the product strongly depend
on these competing phenomena, in turn influenced by phase interac-
tions, system fluid dynamics and, indirectly, unit geometry and size.

To describe the behavior of polydisperse multiphase systems and
design process units for treating them, researchers and engineers have
resorted for several years to experimental correlations and pilot plants.
These correlations, however, have limited applicability as they are
valid only for the specific cases investigated; so, they cannot help
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improve design and performance, or predict the effect of changing the
size or geometry of a unit. Pilot plants, on the other hand, are costly
and time-consuming and do not always lead to adequate scale up. In
consequence, thanks to the high-speed computers and advanced
numerical methods now available, the modeling and simulation of
multiphase flows have rapidly gained importance. Due to the com-
plexity of such flows, a relatively large number of modeling
approaches have been developed in the literature (Fox, 2012). At the
most fundamental level the particles are treated individually, so that
the discrete structure of the dispersed material is entirely retained;
here one models the behavior of each particle, accounting for its
interaction with the surrounding fluid and other particles. This
strategy is powerful but computationally extremely expensive. The
information that these simulations provide is normally not of direct
use to engineers and greatly exceeds their normal requirements. An
alternative strategy is to model also the discontinuous phases as
continua. Several Eulerian models of this kind have been developed
(Drew and Passman, 1998); these, however, often present severe
limitations.

One of the most important limitations, present also in many
advanced models, is that these do not account for polydispersity,
neglecting in particular that the discontinuous phases are made of
elements with changing size distribution. They instead assume that
the latter consist of classes of particles with equal and constant sizes.
The constant-particle-size assumption significantly limits the model
flexibility: classes may segregate or mix, and particles may change
class, but variations in the diameters attached to each class are not
allowed. Real systems are instead characterized by broad particle size
distributions (PSDs) which evolve continuously owing to fluid–particle
and particle–particle interactions. Particles can shrink, aggregate, break
and nucleate; hence, their size distribution varies continuously in time
and space. Predicting this evolution, which depends on the local
conditions wherein a system operates, is key to accurately describing
its behavior.

To account for polydispersity and be able to predict how PSDs
evolve, one needs to solve a population balance equation (PBE),
possibly along with customary multifluid balance equations for
mass and/or linear momentum. Doing so is quite difficult, since
the PBE dimensionality differs in general from that of classical
fluid dynamic equations. In the last years numerous attempts to
solve this equation, in particular within CFD codes, have been
reported in the literature (in Fox, 2012 and Marchisio and Fox,
2007, for instance, one may find several references); nevertheless,
dense fluid–solid systems, in which the phases strongly interact and
do not share the same velocity field, have not been investigated
extensively (Fan et al., 2004; Fan and Fox, 2008; Fox and Vedula,
2010; Mazzei, 2011; Mazzei et al., 2012), few works considering
size-changing phenomena such as chemical reaction, aggregation
or breakage.

Often engineers are only interested in few integral properties of
the distribution function that describes the particle population.
Such properties, called moments, may be important because they
control the product quality or because they are easy to measure
and monitor. The idea behind the method of moments is to derive
transport equations for the moments of interest (Randolph and
Larson, 1971). This method is attractive, for the number of
equations to be solved is small; however, the moment transport
equations are unclosed, because for any given set of moments that
the modeler wishes to track, the equations normally involve
higher-order moments external to the set (Marchisio and Fox,
2007). The quadrature method of moments (QMOM) and its direct
version (DQMOM) overcome this issue by approximating the
distribution function with a quadrature formula; assuming the
functional form of the distribution allows to calculate, with a given
approximation, the values of any higher-order moment external to
the set tracked by the methods. QMOM tracks the moments of this

set by integrating their evolution equations; then, once these
moments are known, it calculates the nodes and weights of the
quadrature formula. DQMOM, conversely, directly tracks the latter,
solving the evolution equations that govern them. The models are
theoretically equivalent, as we shall discuss later on, but present
different issues when one solves them numerically (Shohat and
Tamarkin, 1943; Akhiezer, 1965; Wright, 2007; Mazzei et al.,
2010a; Petitti et al., 2010; Mazzei, 2011; Mazzei et al., 2012).

In most versions of the quadrature-based moment methods
reported in the literature, the PBE solved does not feature
convection in physical space; written for well-mixed systems, for
which the distribution function is uniform in such a space, these
models account solely for particle growth, their PBEs featuring
convection just in size space (e.g., Dorao and Jakobsen, 2006;
Grosch et al., 2007; Aamir et al., 2009; Gimbun et al., 2009; Qamar
et al., 2011). Some other models, written for nonuniform systems,
account for convection in physical space, but often assume that all
quadrature classes are advected with the same velocity field, so
that particles share the same velocity (e.g., Petitti et al., 2010). This
assumption prevents solids from segregating. Dense polydisperse
fluidized powders may segregate or mix, depending on the process
operating conditions, and in order to describe these phenomena
one needs to let particles move with different velocities.

Few models catering for nonuniform dense polydisperse fluid–
solid systems have this feature, and hence have the capability to
describe segregation. Among the first to be developed are those of
Fan et al. (2004) and Fan and Fox (2008); these let each quadrature
class be advected with its own velocity field, whose evolution is
governed by a coarse-grained dynamical equation. These DQMOM
models, as Mazzei et al. (2010a) reported, have a significant
limitation: they do not permit powders to micromix, that is to
say, to mix at the length scale of the particles. Solely macromixing,
that is to say, convection-induced mixing, is possible in such
models. We shall address this aspect in detail later.

To overcome this problem, Mazzei (2011) recently developed a
revised version of DQMOM in which the evolution equations for
the quadrature weighted nodes and weights feature a diffusive
flux that compensates for the error that one makes when calculat-
ing the convective flux of a property adopting the quadrature-
based approximation of the distribution function that describes
the particle population. In Mazzei (2011), we did not specify which
value to assign to the diffusion coefficient. This, indeed, is an open
issue, which we shall address in the present work.

This work aims to simulate the segregation dynamics of inert
dense polydisperse fluidized powders. The paper is organized as
follows. We introduce the problem that we intend to investigate.
Next, we describe the mathematical model, in particular the
DQMOM model recently developed in Mazzei (2011). Since we
shall need them subsequently, we also report the evolution
equations of the QMOM model, showing that the two are theore-
tically equivalent. Their equations feature a diffusive term which
allows the powders to mix at the particle length scale (micromix-
ing). We discuss how to assign a value to the diffusion coefficient
appearing in the evolution equations of the models, conducting a
sensitivity analysis on the latter; to do so, we simulate the mixing
of nonuniform powders using different values for the diffusivity.
Finally, after having estimated a suitable value for this coefficient,
we simulate the system dynamics under conditions which should
promote segregation, validating the predictions of the numerical
simulations experimentally.

2. Problem description

We aim to simulate the dynamics of inert dense polydisperse
fluidized powders under conditions that should promote segregation.
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