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H I G H L I G H T S

� The direct DuQMoGeM is introduced for the solution of population balance problems.
� As DQMOM, this method also solves for the quadrature abscissas and weights.
� Differently from DQMOM, the direct DuQMoGeM is a dual-quadrature method.
� The quadrature errors in direct DuQMoGeM can be controlled by an adaptive cubature.
� Both methods were compared for problems with breakage, aggregation and growth.
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a b s t r a c t

The Direct Dual Quadrature Method of Generalized Moments (D2uQMoGeM) was formulated for the
solution of the population balance equation. It mixes the properties of the Direct Quadrature Method of
Moments (DQMoM) and the Dual Quadrature Method of Generalized Moments (DuQMoGeM). The
weights and weighted abscissas are tracking directly as in DQMoM and the quadrature errors are
controlled by an adaptive quadrature as in DuQMoGeM. The D2uQMoGeM was implemented and tested
for several different problems with analytical solutions. It was shown to be more accurate than DQMoM
with a reasonable increase in computational time.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Polydisperse multiphase flows are present in several industry
processes. These flows can be modeled by a mesoscopic approach
called Population Balance (PB) combined with the Eulerian multi-
fluid flow formulation (Silva and Lage, 2011), which may be called
PB-CFD simulations. The population balance equation (PBE) is the
conservation equation for the number of particles, represented by
the mean number density function, which depends on the particle
properties, the physical space and time (Ramkrishna, 2000). This
mesoscopic framework has a large range of applicability and there
is a considerable impetus for the development of numerical

methods for solving the PBE (Bove et al., 2005; Strumendo and
Arastoopour, 2008; Fox et al., 2008; Massot et al., 2010; Attarakih
et al., 2009; Lage, 2011; Yuan et al., 2012, among others). Despite
these efforts, there is still a lack of accurate and robust techniques
for analyzing the dynamics of particle systems.

Basically, there exist four classes of well established methods to
solve the PBE: Monte-Carlo methods, discretization methods,
moment methods closed by quadrature and weighted residual
methods. In the following, we focused on the quadrature-based
moment methods (QBMM) and their variants.

The first QBMM was the quadrature method of moments
(QMoM). The QMoM solves the moments of the number density
function (NDF) and the integral terms of the PBE are approximated
by an N-point Gauss–Christoffel quadrature rule, that is, a Gaus-
sian quadrature whose weight function is the particle number
density function (McGraw, 1997). In this method, the N-point
Gauss–Christoffel needs to be calculated from the first 2N
moments using the Product-Difference algorithm (PDA) (Gordon,
1968) or the Modified Chebyshev method (MCM) (Wheeler, 1974).
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Afterwards, Marchisio and Fox (2005) developed the Direct QMoM
(DQMoM), in which the weights and abscissas are tracked in time
and space instead of the moments of the NDF. Therefore, DQMoM
solves the PBE without calculating the Gauss–Christoffel quad-
rature during the solution, which reduces the computational cost.
The Gauss–Christoffel quadrature provides a discretization in the
internal variable, which yields N particle phases in an Eulerian
multifluid approach for polydispersed multiphase flows, being the
reason why these methods are considered well-suited for PB-CFD
simulations (Silva and Lage, 2011).

Nonetheless, QMoM and DQMoM have some limitations. Both
are unable to reconstruct the distribution function, whose values
must be calculated at the lower boundary of the particle size space
for some problems with a negative growth rate (Massot et al.,
2010). Furthermore, the N-point Gauss–Christoffel calculation is an
ill-conditioned problem what may limit the number of quadrature
points that can be used in the QBMM (Gautschi, 2004). Since the
number of quadrature points also controls the QBMM accuracy, a
small number of quadrature points are not usually enough to
represent the integral terms of the integrated PBE (Dorao and
Jakobsen, 2006a, b). Hence, this might yield a poor representation
of the physical behavior of the moments and even a loss of the
positiveness of the measure defined by them (Petitti et al., 2010).

Several variants of QMoM and DQMoM have been developed.
In the following, these variants are shortly reviewed.

Alopaeus et al. (2006) proposed the usage of fixed-point
quadrature rules (FQMoM). This approach avoids some robustness
and accuracy problems associated to the Gauss–Christoffel quad-
rature computation. By analyzing several problems, they con-
cluded that FQMoM was better than QMoM in accuracy and
computational cost.

Grosch et al. (2006) solved the moment equations and the
quadrature moment approximation simultaneously as a differen-
tial algebraic system of equations (DAE). However, they did not
obtain a significant improvement compared to the standard
QMoM. Nagy et al. (2009) applied a similar methodology for
several mechanisms using an analytical Jacobian matrix in the
DAE system. The authors observed an enhancement of robustness
and accuracy for pure growth problems but not for cases with
breakage and aggregation. This occurs due to the intrinsic quad-
rature errors of QMoM. Later on, Nagy et al. (2012) used automatic
differentiation (AD) to compute the Jacobian matrix of the DAE-
QMoM. This method, termed AD-QMoM, was more robust and at
least 2 times faster than DAE-QMoM for the same level of
accuracy. Nevertheless, it still presents the intrinsic quadrature
error of QMoM.

Su et al. (2007) proposed the usage of an adjustable factor, s, in
QMoM, whose purpose is to improve the robustness in the the
Gauss–Christoffel quadrature calculation. Basically, they used frac-
tional moments given by

μk=s ¼
Z 1

0
xk=sf ðx; tÞ dx¼ ∑

N

α ¼ 1
xk=sα ωα ð1Þ

and defined ~x ¼ x1=s as equivalent abscissas which were then
calculated by the product-difference algorithm (Gordon, 1968).

Afterwards, Su et al. (2008) applied the same idea to DQMoM
but using an adaptive procedure to chose the value of the
adjustable factor, calling the method as Adaptive DQMoM
(ADQMOM). The value of the adjustable factor was determined
by a search procedure based on the conditional number of the
ADQMoM system of linear equations.

Attarakih et al. (2009) proposed the sectional QMoM (SQMoM),
focusing on reconstructing the NDF. The domain is divided into
sections whose sectional moments are then used to determine a
quadrature for each section, as in QMoM. Although the Gauss–
Christoffel quadrature was also used, Attarakih et al. (2009)

recommended an equal-weight two-point quadrature with better
numerical properties.

Qamar et al. (2011) applied QMoM for solving a univariate PBE
using the moments of polynomials to compute the Gauss–Chris-
toffel quadrature for closure. These polynomials are orthogonal in
relation to the measure defined by the particle number distribu-
tion function and their generalized moments were used to obtain
the coefficients in the three-term recurrence relation and then the
quadrature points. They stated that this determination of the
quadrature rule avoids the ill-conditioned issue present in PDA
and MCM (John & Thein, 2012). However, they applied the method
with just three quadrature points which usually does not lead to
an ill-conditioned problem. In essence, the quadrature rule com-
putation is similar to that used in DuQMoGeM (Lage, 2011), where
the modified Chebyshev method was applied to the generalized
moments of known families of orthogonal polynomials (for
instance Legendre, Laguerre) to compute the coefficients in the
recurrence relation. However, the later procedure is better condi-
tioned (Gautschi, 1994). Later on, the method extension for
bivariate population balance equation was proposed by Qamar
et al. (2010), using an arbitrary transformation of the two internal
variables into the independent variable of the polynomials. This
method leads to a three-point quadrature whose determination
involves a specific set of generalized mixed moments with orders
as large as ten.

Massot et al. (2010) introduced a modified sectional DQMoM
combined with the method of characteristics. Since they were
interested in droplet evaporation problems, the entropy maximi-
zation (EM) reconstruction technique was used to rebuild the NDF
in order to evaluate the particle flux at the lower boundary of the
particle size space. They simulated some evaporation problems,
showing that the modified sectional DQMoM is accurate and
stable for describing the dynamics of the moments. However,
the EM numerical complexity increases significantly when it is
applied to a multi-dimensional NDF (Yuan et al., 2012).

An interesting technique that is able to reconstruct the NDF
from a finite number of its moments is the kernel density element
method (KDEM) (Athanassoulis and Gavriliadis, 2002). The KDEM
expresses the NDF in terms of the superposition of Kernel Density
Functions (KDF), which has special features that can ensure the
positivity of the reconstructed NDF. In essence, this method is
similar to EM. It also uses functions (KDF) whose unknown
parameters are obtained by solving a minimization problem based
on the moments of the NDF. Based on this idea, Yuan et al. (2012)
developed a method called EQMoM, which mixes the properties of
QMoM and KDEM. EQMoM is a dual-Gaussian quadrature method
which uses a unique parameter to determine the KDFs, which is
obtained from an additional moment equation. The results
obtained by Yuan et al. (2012) were very good for all studied cases.

As it has already been cited, the QBMM usually suffers from
error accumulation due to the quadrature approximations, which
can eventually degenerate the PBE solution. In order to overcome
this inherent problem, Lage (2011) developed the Dual Quadrature
Method of Generalized Moments (DuQMoGeM). In this method,
the quadrature errors can be controlled using adaptive numerical
integration (Favero and Lage, 2012). For this reason, DuQMoGeM
attained better results than QMoM for all cases studied by Lage
(2011). However, this methodology has some shortcomings. It also
tracks the moments of the distribution and, therefore, cannot be
used to simulate a polydisperse multiphase flow when the particle
velocity depends on the internal variables.

In this work, the Direct Dual Quadrature Method of Generalized
Moments (D2uQMoGeM) was formulated and tested. D2uQMoGeM
uses the same idea behind DQMoM to make DuQMoGeM a direct
method. The weights and weighted abscissas are tracking directly
as in DQMoM and the quadrature errors are controlled by an
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