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a b s t r a c t

An approach using an experimentally built low order model is proposed for the estimation of time-vary-
ing heat sources. In a first step, a low order dynamical system of equations, linking up temperatures at a
set of specific points to heat sources strengths, is identified from experimental data using the Modal Iden-
tification Method. In a second step, the low order model is used to efficiently solve the transient inverse
problem for the estimation of heat sources intensities from temperature measurements. The proposed
approach is illustrated with an experimental set-up involving thermal diffusion with convective and radi-
ative boundary conditions.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the framework of analysis and control of thermal systems,
the knowledge of temperature evolutions at some monitoring
points is often a basic requirement. When the number of monitor-
ing points is large and/or when technical constraints prevent to
place thermocouples or to use optical measurements, numerical
simulation becomes a great tool to assess such quantities.

The knowledge of the involved heat transfer modes, geometry,
boundary conditions (including heat exchange coefficients), ther-
mophysical parameters, heat sources, is then needed to correctly
model the system. If all these features are known, then the whole
space and time-varying temperature field can be calculated.

When some of these features are unknown or not known accu-
rately enough, and when some temperature data are available
(other than those, unavailable, at desired monitoring points), then
one has to deal with an inverse problem. Inverse problems are usu-
ally mathematically ill-posed and several regularization methods
have been developed to ensure stable solutions (for an overview,
see [1] for example).

The estimation of heat sources has been investigated by several
authors. Concerning heat diffusion, the reader could refer to

numerical works of Silva Neto and Özis�ik [2,3] where authors use
the conjugate gradient method with the adjoint equation to solve
a transient IHCP. In [2], both the source location and the timewise
varying strength are unknown, whereas in [3] the space and time
dependent strength of a volumetric heat source are sought for.
Works by Le Niliot and Lefèvre [4–7] deal with the estimation of
both time-varying strength and position of multiple static or mov-
ing sources and containing experimental tests. The authors use a
formulation based on the Boundary Element Method and the esti-
mation is performed in a sequential manner. They also provide sev-
eral references to some works dealing with heat sources
estimation, most of them being concerned with the estimation of
time-varying strengths only. Inverse problems for the estimation
of heat sources in natural convection have also been investigated,
especially by Park and his co-workers who conducted several
numerical studies. The conjugate gradient method has been used
in [8] and [9], while a sequential approach based on Kalman Filter-
ing has been developed in [10].

The usual way to model a thermal system is to build a numer-
ical model based on a discrete form of the continuous equations
governing heat transfer inside the domain under consideration.
This leads to a system of algebraic equations (let us say N equa-
tions), which can be large due to zones with sharp temperature
gradients and/or when 3D effects cannot be neglected.

Solving the inverse problem using such a large sized model, also
called Detailed Model (DM), may be a quite long and difficult task.
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Model reduction methods aim to build low order models, that
is, models involving a number of equations n << N. Reduced Models
(RM) are able to reproduce the DM behavior with short computing
time while preserving a satisfaying accuracy, and are very useful to
solve inverse problems.

Among reduction techniques applicable to nonlinear problems,
let us cite two of them. The Branch Eigenmodes Reduction Method
(BERM) [11] has been used for building reduced models in the
framework of heat sources strengths estimation. The BERM has
been used to build low order models for the estimation of a single
[12] and two [13] unknown heat source(s) from experimental data.
The Proper Orthogonal Decomposition (POD) with a Galerkin pro-
jection [14], has been used in [15] to build a reduced model for the
estimation of the time-varying intensity of a heat source in 2D
nonlinear heat diffusion. This technique has also been used for in-
verse natural convection problems cited supra [9,10].

In these methods, the RM is obtained by computing modes of a
specific spectral problem, and then by selecting or amalgaming the
most dominant modes according to a particular criterion (tempo-
ral, energetic, . . .).

In a different way, the Modal Identification Method (MIM) [16] is
based on the identification of the reduced model parameters
through the minimization of a squared residues functional built with
the discrepancy between the responses of the system (outputs of a
DM or in-situ measurements) on one hand and the outputs of the
RM on the other hand, when specific input signals are applied. Re-
duced models built with the MIM have been used to solve efficiently
several types of inverse problems with transient loads.

In [16], the MIM has been used in heat diffusion to build re-
duced models from a detailed one. These RMs have been used in
[17] to solve an inverse boundary value problem for a single
time-varying thermal input, using simulated data. Heat transfer
was nonlinear due to the dependence of thermal conductivity on

temperature, according to a linear relationship. That led to qua-
dratic terms in the reduced model. In [18], the MIM has been used
to identify low order models from an experiment. These models
have then been used to simultaneously estimate five time-varying
heat loads. Experimental data were also used for the inverse prob-
lem. The experimental apparatus was designed in order to ensure a
linear relationship between thermal loads and output tempera-
tures, especially with low radiative heat transfer. The limited tem-
perature range also ensured constant thermophysical properties. In
[19], the MIM has been used in turbulent forced convection to
identify low order models from concentration measurements in a
ventilated enclosure. These models have then been used to simul-
taneously estimate the time-varying intensities of two pollutant
sources. Experimental data were used both for the model identifi-
cation and the linear inverse forced convection problem.

The present paper constitutes a continuation of our works. It
deals with the construction of reduced models for heat diffusion
and convection with nonlinear boundary conditions, and the use of
such reduced models for solving inverse problems. An experimental
set-up is used to test the proposed approaches. It involves two time-
varying heat sources, whose positions are supposed to be fixed, and
temperatures measured by infrared camera and thermocouples.

The main differences between the proposed work and our pre-
vious ones are the following:

� In comparison with [16] and [17] dealing also with nonlinear
heat diffusion, the present work deals with the estimation of
two heat source intensities instead of one. The proposed inverse
problem is trickier because each sensor is affected by both
sources, and one has to discriminate them. Moreover, the low
order models have been identified from temperature measure-
ments recorded on the experiment, and no numerical model
has been used. Experimental data have also been used for the

Nomenclature

A(N,N) state matrix of DM
B(N,p) command matrix of DM
Cp heat capacity J kg�1 K�1

Cobs(qo,N) observation matrix of DM
F(n,n) diagonal matrix (modal form of diffusion term) of RM
G (n,p) command matrix of RM
Ho (qo,n) output matrix of RM associated with vector eY o

H (q,n) output matrix of RM associated with vector Y
h convective exchange coefficient W m�2 K�1

M (N,N) matrix of eigenvectors of state matrix A
M point in the space domain
N order of DM (i.e. its number of equations)
n order of RM (i.e. its number of equations)
nf number of future time steps for function specification
p dimension of input vector U
qo dimension of output vectors Yo and eY o

q dimension of vector Y associated with inversion data
Q heat source strength W
t time s
T; _TðNÞ temperature vector, its derivative with respect to time

K, K s�1

U (p) input vector
V velocity m s�1

X; _XðnÞ RM state vector, its derivative with respect to time
Yo (qo) DM output vectoreYoðqoÞ RM output vector
Y (q) vector associated with data for inversion (part of eY o)
Z(X) vector of nonlinearities in the reduced model

Abbreviations
DM Detailed Model
RM Reduced Model

Greek symbols
C system boundary
Dt time step s
e emissivity of the radiative surface
k thermal conductivity W m�1 K�1

q density kg m�3

r Stefan–Boltzmann constant W m�2 K�4

rm standard deviation of measurement errors K
rU mean quadratic discrepancy for inputs W
rY mean quadratic discrepancy for outputs K
U heat flux density W m�2

X system domain or matrix applying vector Z (X)

Subscripts
k time discretization
r reduced

Superscripts
* measured data for RM identification
me measured data for inversion
T transposition sign
�1 inverse of a matrix
id related to RM identification
it related to iterations for time steps of inverse problem
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