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H I G H L I G H T S

c A more robust method of solving elliptic PDEs is developed and discussed.
c A comparison of the false transient and the proposed method is explained.
c Several engineering/transport examples are considered.
c Linear solutions are described using matrix algebra and matrix exponentials.
c Nonlinear problems are solved, including unstable steady state solutions.
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a b s t r a c t

Elliptic partial differential equations (PDEs) are frequently used to model a variety of engineering

phenomena, such as steady-state heat conduction in a solid, or reaction-diffusion type problems.

However, computing a solution can sometimes be difficult or inefficient using standard solvers.

Techniques have been developed, including the method of lines (Schiesser, 1991), which can solve

parabolic PDEs using well developed numerical solvers, but are not directly applicable to elliptic PDEs.

The method of false transients overcomes this limitation by arbitrarily introducing a pseudo time

derivative to modify the elliptic PDE to a parabolic PDE. However, this technique diverges for certain

problems, such as when the solution is an unstable equilibrium point. A Jacobian-based perturbation

approach is presented as an alternative for situations when the standard false-transient method fails.

Two examples are shown to demonstrate the robustness of the proposed method over the false

transient method.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A wide variety of partial differential equations arise when
describing engineering systems. For examples, variations on
Laplace’s equation arise frequently in problems of transport phe-
nomena (Bird et al., 2006). In order to solve such a wide range of
problems, several numerical methods have been developed to
solve partial differential equations. The choice of method is
dependent on the desired accuracy, as well as concerns about the
stability and robustness of the system, while maintaining compu-
tational efficiency. Furthermore, these characteristics are depen-
dent on the form of the partial differential equation to be solved,
i.e. elliptic, parabolic, or hyperbolic. For parabolic equations such as

the heat equation, several numerical methods exist that can be
used to find a solution (Dehghan, 2006). For example, the method
of lines is one such efficient routine in which the spatial dimen-
sions are discretized using any of a number of techniques, such as
finite difference, finite element, finite volume, or collocation
methods (Berzins et al., 1989; Constantinides and Mostoufi,
1999; Cutlip and Shacham, 1998; Dehghan, 2006; Sadiku and
Obiozor, 2000; Schiesser, 1991, 1994a, 1994b; Schiesser and
Griffiths, 2009; Schiesser and Silebi, 1997; Taylor, 1999). This
converts the partial differential equation (PDE) to an initial value
problem (IVP) system of ordinary differential equations (ODE) or
differential algebraic equations (DAEs). Software packages have
been developed to specifically solve problems using the method of
lines (Berzins et al., 1989). Alternatively, the resulting DAEs can be
solved using standard efficient time integrators (Cash, 2005),
including FORTRAN solvers such as DASKR or DASSL or in a
computer algebra system such as Matlab (MathWorks, 2012)
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(dsolve), Maple (Maplesoft, 2012) (dsolve), Mathematica (Wolfram,
2012) (ndsolve), etc. The versatility and simplicity of the method of
lines has led to its use in a wide range of engineering applications,
including fracture problems (Bao et al., 2001), heat transfer
(Labuzov and Potapov, 1985), solving Navier-Stokes equations
(Ers-ahin et al., 2004) and electromagnetics (Pregla and
Vietzorreck, 1995; Sadiku and Obiozor, 2000). Furthermore, Pregla
and Cietzorreck used the method of lines in conjunction with the
source method to handle inhomogeneous boundary conditions and
discontinuities in microstrip lines and antennas (Pregla and
Vietzorreck, 1995).

The solution of elliptic partial differential equations, such as
Laplace’s equation, is more difficult because there is not a simple
way to convert the equations to an initial value problem to allow
the use of the method of lines. A Newton–Raphson method, or
another approach to solving a system of nonlinear equations, can
be used if the system of algebraic equations resulting from the
discretization is sufficiently well behaved and a reasonable initial
guess is available. A semianalytical method of lines, valid for
linear elliptic PDEs and certain quasilinear elliptic PDEs has been
presented previously (Subramanian and White, 2004). However, a
more popular choice has been the method of false transients,
partially due to its ability to handle some nonlinear problems, and
ease of implementation. In the false transient method the
variables are discretized in the spatial or boundary value
independent variables (x and y), and a pseudo time derivative is
arbitrarily added to the problem statement (Mallinson and de
Vahl Davis, 1973; Schiesser, 1991, 1994a; Schiesser and Griffiths,
2009; Schiesser and Silebi, 1997; White and Subramanian, 2010).
The addition of this fictitious time derivative converts the
elliptic PDE to a parabolic PDE and allows the solution to be
determined by marching in pseudo time to a steady state
condition. By doing this, the efficient IVP/DAE solvers can be
applied in a matter analogous to the method of lines (Schiesser
and Griffiths, 2009).

Like the method of lines, the method of false transients is used
to solve a variety of engineering problems. For example, Xu, et al.,
used the false transient method to describe the concentration and
temperature profiles of catalyst particles (Xu, 1993). This approach
has also been used to numerically solve for three dimensional
velocity profiles by solving the Navier-Stokes equation (Lo et al.,
2005), as well as solving the convective diffusion equation for
axial-diffusion problems in laminar-flow reactors (Nauman and
Nigam, 2004). Other researchers have used the false transient
method for analyzing mass transfer in porous media (Singh et al.,
1999) or laminar film boiling (Srinivasan and Rao, 1984).

However, as shown in this paper, the system of ODE/DAEs
resulting from the use of the false transient method can be
unstable and may not converge to the desired (or any) solution.
This problem can sometimes be rectified by modifying the form of
the equations or boundary conditions using intuition and trial and
error. In other cases, the system cannot be made to converge,
regardless of how the problem is presented. An alternative,
Jacobian-based perturbation approach is proposed in this paper,
which is robust and does not suffer from the same stability issues
which befall the false transient method. A similar approach has
been used as a superior method for the initialization of the
algebraic variables in systems of DAEs (Methekar et al., 2011).

2. Generic formulation of the false transient method and the
perturbation method

Consider a general PDE of the form

D fðxð ÞÞ ¼ 0 ð1Þ

where f(x) is the (continuous) dependent variable of interest, x is
the vector of independent variables, and D is a generic linear
differential operator with the form:

D¼
X

i

X
j

aij
@i

@xi
j

ð2Þ

Eq. (1) can be discretized using any of a number of techniques,
such as finite difference, finite element, finite volume, or
collocation, among others. This results in a system of algebraic
equations of the form

gðUÞ ¼ 0 ð3Þ

where U is the vector of the discretized dependent variables. In
linear systems, Eq. (3) can be solved directly, though this is not
the case in highly nonlinear problems. Both the method of false
transients and the perturbation method introduce a pseudo time
variable, t, such that Eq. (3) is represented as:

g Uðtð ÞÞ ¼ 0 ð4Þ

when using the method of false transients, this is done by
introducing a first order pseudo-time derivative into Eq. (4) such
that it becomes:

g U tð Þð Þ ¼
dU
dt

ð5Þ

This allows the use of efficient time adaptive ODE solvers to be
used. In order for convergence to occur, the right hand side must
go to zero as t goes to infinity:

lim
t-1

dU
dt ¼ 0 ð6Þ

This reduces Eq. (5) to Eq. (3) and ensures that the original
problem is satisfied. However, the method of false transients can
fail if Eq. (6) does not hold, as can occur in an unstable
system. Therefore, an alternative perturbation approach is shown
here. A small perturbation parameter, E, can be applied in time to
Eq. (4) such that

lim
E-0

g U tþEð ÞÞ ¼ 0ð ð7Þ

Eq. (7) can be expanded using a Taylor series to give

g U tð Þð ÞþE dg Uðtð ÞÞ

dt þO E2
� �
¼ 0 ð8Þ

Assuming that E is sufficiently small that the higher order
terms can be neglected, Eq. (8) reduces to

g U tð Þð ÞþE dg Uðtð ÞÞ

dt
¼ 0 ð9Þ

The total derivative in Eq. (9) can be rewritten using the chain
rule with partial derivatives

g U tð Þð ÞþE @g

@U
@U
@t
þ
@g

@t

� �
¼ 0 ð10Þ

Noting that qg/qU¼J, where J is the Jacobian representing the
algebraic system. Also, note that from Eq. (3), g is not a function of
pseudo time directly; only indirectly through the dependent
variables, U, are functions of pseudo time. Therefore, qg/qt¼0
above and Eq. (10), can be rearranged to give

g U tð Þð Þ ¼ �EJ @U
@t ð11Þ

Eq. (11) can be considered as an application of Davidenko’s
Method (Schiesser, 1994a). Note that the choice of E is somewhat
arbitrary, and must be chosen with consideration to the system.
Ideally E must be sufficiently small that the assumption that the
higher order terms in Eq. (8) can be neglected is valid. Here,
E¼ 10�3 is used throughout the remainder of this work. This
choice is somewhat arbitrary as changing E¼ 10�3 by an order of
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