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H I G H L I G H T S

c Classical approach is used to model two-dimensional mass transport in a Stefan tube.
c The Navier–Stokes equations are solved numerically using a finite difference method.
c A diffusion creep (slip) boundary condition is used on the side walls.
c Comparison with a published solution using the Kerkhof–Geboers transport equations.
c Difficulties with the Kerkhof–Geboers solution are discussed.
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a b s t r a c t

Contrary to claims made in the recent literature, we show that the classical approach to mass transport

in gas mixtures can be used to model two-dimensional Stefan tube diffusion. Numerical solutions are

obtained for water evaporating into air, using the Kramers–Kistemaker diffusion slip velocity as the

boundary condition on the side walls. A comparison is made with the analysis of Salcedo-Diaz et al.

(2008 Velocity profiles and circulation in Stefan-diffusion. Chem. Eng. Sci. 63, 4685–4693), in which the

classical approach is rejected in favor of the Kerkhof–Geboers equations. Difficulties inherent in this

latter approach are discussed in detail.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Salcedo-Diaz et al. (2008) have revisited the familiar Stefan-tube
diffusion problem as a showcase for demonstrating the use of the
Kerkhof–Geboers ‘‘Unified Theory of Isotropic Molecular Transport
Phenomena’’ (Kerkhof and Geboers, 2005a,b). In the 2005 papers,
one-dimensional applications were demonstrated: the objective of
the 2008 paper was to obtain two-dimensional solutions for the
Stefan-tube problem, and thereby evaluate the adequacy of the well
known one-dimensional solution for diffusion with one component
stationary. In addition, some emphasis is given to use of the model
results to illuminate the essential physics of the problem. Results are
presented for continuum conditions, as well as for a Knudsen number
�3. In this paper our focus is on the continuum limit. In order to
provide a rationale for the use of the Kerkhof–Geboers theory,
Salcedo-Diaz et al. (2008) argued that the ‘‘classical approach’’ cannot
be used for this (and some other) diffusion problems: thus it is

appropriate that we first critically examine the reasons given for this
rejection.

Salcedo-Diaz et al. (2008) describe the classical approach as one in
which the mixture motion is described by the Navier–Stokes equa-
tions, and species transport by (n�1) Maxwell–Stefan equations. For
a binary mixture, species transport is then described by a single
convection–diffusion equation in terms of Fick’s law. They claim that
the classical approach cannot hold for the Stefan tube problem and
refer to a ‘‘thought experiment’’ described in an earlier paper (Kerkhof
and Geboers, 2005a). This thought experiment concerns isobaric
diffusion as experimentally investigated by Graham (1833), Remick
and Geankoplis (1973), and others. In attempting to obtain a solution
using classical theory, they integrate the momentum equation to
show that the mass average axial velocity is constant across the tube
cross-section. They then apply a no-slip wall boundary condition to
conclude that the axial velocity is zero across the tube in violation of
Graham’s law. This use of the no-slip boundary condition is quite
incorrect. It is most puzzling why the authors did so, given that their
literature citations contain key papers that show the no-slip boundary
condition to be invalid when there is an axial wall concentration
gradient. The correct boundary condition is the diffusion slip (creep)
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velocity. The diffusion slip velocity was first derived by Kramers and
Kistemaker (1943) in connection with equimolar counter-diffusion,
and subsequently used by Hoogschagen (1955) and Kruger (1976) for
isobaric diffusion. Kerkhof and Geboers (2005a) also cite the mono-
graph by Jackson (1977) in which the diffusion slip velocity is again
derived. Interestingly, Jackson states clearly that use of the no-slip
boundary condition can lead to substantial errors in the fluxes, and
‘‘Nevertheless this inappropriate condition is still invoked in solving
diffusional problems.’’ In recent years rigorous kinetic theory models
have been used to obtain improved data for the diffusion slip velocity:
Mills (2007) presents a review of this work and its implications.

In what follows we will first demonstrate the use of the
classical approach for the two-dimensional Stefan-tube problem.
Subsequently we will make comparisons with the results obtained
by Salcedo-Diaz et al. (2008) using the Kerkhof–Geboers theory.

2. Classical analysis of the Stefan-tube

2.1. Prior work

One-dimensional analysis of the Stefan-tube (and related heat-
pipe problem) is found in standard texts and generally referred to as
‘‘diffusion with one component stationary’’. The Stefan tube has
been used for measurement of diffusion coefficients in vapor-gas
mixtures for many years. Early on, there was concern that the 1-D
analysis might not be adequate due to end effects (Lee and Wilke,
1954; Heinzelmann et al., 1965). Thus there was the motivation to
explore 2-D effects. With advances in numerical methods, the
required solution of the governing elliptic nonlinear partial differ-
ential equations became feasible in the late 1960s: 2-D results for
the related heat-pipe problem were obtained by McDonald et al.
(1971) and for the Stefan-tube by Meyer and Kostin (1975).
However, in both studies the no-slip boundary condition was used
on the tube walls because these workers were unaware of the
significance of diffusion slip. Nevertheless, the results were useful in
showing that the gas circulated, rather than being stationary, and
that the 2-D flow features did not have a significant effect on the
radial concentration profiles and evaporation rates.

In the case of water evaporating into air, the diffusion slip velocity
is directed toward the water surface and is at most about 25% of the
bulk velocity (Mills, 2007). Accounting for the diffusion slip velocity
rather than using a no-slip condition is not expected to substantially
alter the conclusion of McDonald et al. (1971) that 2-D features have
but a small effect on the evaporation rate. Nevertheless, in order to
counter the claims of Kerkhof and Geboers (2005a), we have obtained
numerical solutions for the 2-D continuum problem.

2.2. Analysis

The governing conservation equations for isothermal, steady
flow of an incompressible binary ideal gas mixture, in the absence
of body forces and chemical reacting, are written in cylindrical
coordinates with axial symmetry. For the coordinate system
shown in Fig. 1,
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species conservation:
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for negligible pressure diffusion. The boundary conditions imposed
on these equations are
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Also a total pressure is specified at r¼0, z¼L. Eq. (7b) requires a
specification of the diffusion slip (creep) velocity; using the Kramers
and Kistemaker (1943) model
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Mills (2007) has evaluated the accuracy of this model using experi-
mental data and recent rigorous kinetic theory results and found
that the model gives reasonable results, particularly when the
molecular weights of the two species are substantially different:
for our present purpose Eq. (10) is quite adequate. Eq. (8c) expresses

Fig. 1. Schematic of the Stefan tube.
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