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HIGHLIGHTS

» RLS algorithm was used for both model adaptation and auto-tuning in the GPC.
» No a priori knowledge on move suppression weight is needed.
» Response to nonlinearity of the system was also enhanced by this new scheme.
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In this work, the recursive least squares (RLS) algorithm, which traditionally was used in the
generalized predictive controller (GPC) framework solely for model adaptation purposes, was extended
to cater for auto-tuning of the controller. This new combination which eases the task of controller
tuning, contains both model adaptation and auto-tuning capabilities within the same controller
structure. Hereafter this scheme will be referred to as the adaptive-model based self-tuning generalized
predictive control (AS-GPC). The variable forgetting factor recursive least squares (VFF-RLS) algorithm
was selected to capture the dynamics of the process online for the purpose of model adaptation in the
controller. Based on the evolution of the process dynamics given by the VFF-RLS algorithm in the form
of first order plus dead time (FOPDT) model parameters, the move suppression weight for the AS-GPC
was recalculated automatically at every time step based on existing single input single output (SISO)
analytical tuning expressions originally used for offline tuning of constraint-free predictive controllers.
Closed loop simulation on a validated transesterification reactor model, known for inherent nonlinea-
rities, revealed the superiority of the proposed constrained control scheme in terms of servo and
regulatory control as compared to the GPC with model adaptation only, the conventional GPC as well as
the conventional PID controller. The tuning expressions used, although intended for constraint-free
predictive controllers, yielded good results even in the constrained case.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

parameters (Seborg et al., 2004) at every time step. In general,
two key components within the structure of the controller can be

Adaptive model predictive control (MPC) techniques are adept
in handling dynamically challenging and nonlinear processes due
to the ability to self-adjust model or tuning parameters in real
time. In one implementation as the generalized predictive control
(GPC) (Clarke et al.,, 1987a,b), traditionally it involves model
adaptation alone (e.g., Corréa et al., 2002; Diaz et al., 1995; Ho
et al., 2010, 2012a, 2012b; Moon et al., 2005, 2006), in which the
recursive least squares (RLS) algorithm (Seborg et al., 1986) is
normally used to capture the dynamics of a slowly time-varying
process in the form of linear time invariant (LTI) process model
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made adaptive - the GPC internal model and the GPC tuning
parameters. The need for both of these to be made concurrently
adaptive is obvious: for a nonlinear and time-varying process, it is
impossible to adopt a single LTI model to represent the dynamics
of the process across all operational regions and at all times; with
the change in the model a new set of tuning parameters should be
adopted. This idea of updating the tuning parameters as the
model parameters change was demonstrated by Dougherty and
Cooper (2003a,b) in the multiple model adaptive control (MMAC)
strategy for the dynamic matrix control (DMC), where a
pre-calculated distinct set of tuning parameters was used for
every single model in the model bank. Although adaptation
of the controller was not automated in their proposed strategy,
the work showed that the controller should be retuned according
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to the process model employed. However, for the GPC, usually
one of two such possibilities to make the controller adaptive
is used.

Several authors have proposed different methods to auto-tune
(or self-tune) the MPC controller online, while keeping the model
parameters fixed. In the work of Al-Ghazzawi et al. (2001), the
authors developed analytical sensitivity expressions relating the
process outputs and the DMC tuning parameters (i.e., the weights
on the output residuals and the move suppression coefficients)
and utilized it for automatic online adjustments of the tuning
parameters. The prediction and control horizons were set at
predetermined values and only the weights on the output
residuals and the move suppression weights were retuned in real
time. Han et al. (2006) proposed a self-tuning strategy based on
particle swarm optimization (PSO). A novel performance index
was developed and PSO was used to search for the optimal tuning
parameters while minimizing the performance index to cater to
the worst operating conditions. This method was used to tune the
DMC by Kawai et al. (2007). However, instead of computing the
entire set of tuning parameters online, the optimization problem
was restricted to computing the optimal values of the inputs and
outputs weights only, hence reducing the computation load
required. Ali and Al-Ghazzawi (2003) proposed a self-tuning
scheme based on fuzzy logic. In this scheme, the prediction
horizon, the move suppression weights, and the weights of the
output residuals were determined from predefined fuzzy rules
which formulate the general tuning guides reported in the
literature, while the control horizon was fixed at a constant value.
Similar fuzzy-based self-tuning schemes were also reported for
the nonlinear MPC (Ali, 2003; Zarkogianni et al.,, 2011). In an
attempt to auto-tune the constraint-free DMC, van der Lee et al.
(2008) used a combination of the genetic algorithm (GA) and the
multi-objective fuzzy decision making (MOFDM) algorithm to
determine the optimal tuning parameters to be used in the
controller. In this scheme, a few sets of initial tuning parameters
were simulated and the objective function for each tuning
parameter set was calculated. Following this, the worst set of
tuning parameters was discarded based on MOFDM while the
best two sets entered the next GA iteration. The optimal tuning
parameters at the end of the GA cycle were then passed to the
controller for implementation.

Although the studies mentioned were mostly implemented in
the framework of DMC, these methods were in principle also
applicable for the GPC. For auto-tuning specific to the GPC
controller, two algorithms were proposed in the work of Liu and
Wang (2000) to carry out a multi-objective online optimization to
obtain the tuning parameters and the control moves. In another
work, Li and Du (2002) adopted a simulation-optimization
approach to tune the move suppression weight for the GPC
according to some fuzzy criteria. Given a priori knowledge on
the requirements of controller smoothness for their bioreactors,
Diaz et al. (1995) proposed a decreasing law for the move
suppression weight. In a recent work for the GPC implemented
through the programmable logic controller (PLC), Valencia-
Palomoa and Rossiter (2010) proposed that the GPC be auto-
tuned based on standard second order characteristics (i.e., rise
time, settling time, overshoot, process gain, dead time and
sampling time of the process) of the process.

In the above methods, with few exceptions (e.g., Diaz et al.,
1995; Valencia-Palomoa and Rossiter, 2010), optimization rou-
tines were used not only for the purpose of producing optimized
control moves, but also they were used directly/indirectly to
compute the optimal set of controller tuning parameters online.
Although these methods do not require much knowledge about
the process from the control engineer to initiate the tuning
procedure - thus alleviating the difficulties that control engineers

faced in tuning the predictive controller - these optimization
approaches were computationally demanding and mathemati-
cally involved (Garriga and Soroush, 2010). Moreover, these
studies utilized a static internal model, and no attempts were
reported to account for the nonlinearities and time-varying
dynamics of the process in the model itself. While the procedures
involved in the studies done by Diaz et al. (1995) as well as
Valencia-Palomoa and Rossiter (2010) are computationally less
demanding and relatively simple to implement, the former is
process specific while the latter requires user input in the internal
model of the controller. This raises the question whether a
simpler but more general tuning algorithm could be developed.
Going further, instead of having either adaptive tuning para-
meters or model parameters, will making both adaptive give a
better controller? We are not aware of studies that explored this
possibility.

This study addresses the gap in the feasibility of having a GPC
controller where both the model parameters and the tuning para-
meters are adapted in real-time, and with simplicity. For ease of
reference, the proposed control algorithm, which incorporates both
the model adaptation and self-tuning strategies in a single controller,
is referred to as the adaptive-model based self-tuning generalized
predictive control (AS-GPC) while the GPC with model adaptation
only (which was included for comparison purposes) is termed
adaptive-model based generalized predictive control (A-GPC). The
brief structure of this paper is as follows. Section 2 addresses the basic
structure of the AS-GPC scheme. In Section 3, the implementation and
analysis of the constrained AS-GPC scheme on a selected nonlinear
transesterification reactor model will be discussed. In the same
section also, the performance of the AS-GPC scheme will be bench-
marked against that of the A-GPC, GPC and conventional PID schemes.
Section 4 concludes this study.

2. Basic structure of the AS-GPC scheme

The general idea of the proposed strategy is illustrated in
Fig. 1. As opposed to the conventional GPC strategy, where users
are required to re-determine the model parameters and retune
the controller manually when unsatisfactory controller perfor-
mance arises, the newly proposed scheme requires the users to
only input a few components, viz. the RLS design parameters, a
reduced amount of GPC tuning parameters (determined offline
and held unchanged throughout the entire course of implementa-
tion), and setpoints, while the re-modelling of the process and the
retuning of the move suppression weight are taken care of by the
controller itself. In practice, a normal user (e.g., operators and
technicians) needs only be concerned about the values of the
setpoints and the remaining tuning parameters, while the manip-
ulation of the RLS design parameters (which normally are deter-
mined one-off) shall be reserved for expert users (e.g., engineers)
only. The move suppression weight was chosen in this work as
the single parameter for auto-tuning implementation due to its
efficacy in affecting the closed loop performance of the GPC (Diaz
et al., 1995; Li and Du, 2002; McIntosh et al., 1991; Shridhar and
Cooper, 1997a,b). Instead of performing an optimization layer,
auto-tuning of the move suppression weight was achieved by
formulating the parameter estimation problem such that the
output of the RLS estimation concurs with the easy-to-use FOPDT
(Seborg et al., 2004) tuning correlations as proposed by Shridhar
and Cooper (1997b). In doing so, our primary concern is “simpli-
city” and not “optimality”. More importantly, with little addi-
tional computational cost, the proposed control algorithm
relieves a normal user from the challenging efforts involved in
retuning the GPC as well as re-modeling the process offline to
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