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H I G H L I G H T S

c We study the phase separation of ternary liquid mixtures.
c Our theoretical model follows the standard diffuse-interface model.
c Hydrodynamics is coupled with thermodynamics of ternary phase field variables.
c Two examples are studied using a second-order finite element method.
c We discuss the morphology development and domain growth during the phase separation.
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a b s t r a c t

In this work we study the demixing of ternary liquid mixtures, following an initial quench to an

unstable state of their phase diagram. Our theoretical model follows the standard diffuse interface

model, where convection and diffusion are coupled via a body force, expressing the tendency of the

mixture to minimize its free energy. Here we model the behavior of a very viscous polymer melt, so

that the Peclet number, expressing the ratio between convective and diffusive mass fluxes, is small.

Two examples are presented, describing the phase separation of ternary mixtures in two and three

phases, respectively. In the first case, as expected, we see that the growth of the domain size follows the

well known diffusion-driven scaling, RðtÞpt1=3. On the other hand, in the second example, the domain

size growth follows the usual t1=3 scaling only until the symmetry among the three phases breaks down

and the domain size of two of the three phases decrease sharply. After that point, the morphology of the

system becomes more regular, almost crystal-like, and the three phases start to grow again, with the

same growth rate RðtÞptn, with n¼0.11.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The diffuse interface model was developed originally to describe
near-critical behavior of single-component fluids and partially mis-
cible binary mixtures (Cahn and Hilliard, 1958, 1959; Hohenberg and
Halperin, 1977; Lowengrub and Truskinovsky, 1998; Vladimirova
et al., 1999), and it has been widely used to study many kinds of
physical phenomena of binary mixtures such as mixing of viscous
liquids (Vladimirova and Mauri, 2004), droplet dynamics (Yue et al.,
2004) and structure development of polymer blends (Prusty et al.,
2007; Keestra et al., 2011).

Despite many industrial and biochemical processes involve
mixtures with three or more components, only a few theoretical
and numerical works have studied these systems. In particular,

Huang et al. (1995) analyzed numerically the dynamics of phase
separation of ternary alloys (i.e. where convective effects can be
neglected) into two and three phases by solving the nonlinear
spinodal decomposition equations in two dimensions. Examining
the dynamical scaling and the growth laws for the late stages of
separation, they saw that the growth law RðtÞpt1=3 is always
obeyed, despite the fact that the self-similar regime is achieved
very slowly in ternary systems. Later, Kim and Lowengrub (2004,
2005) developed a full Navier–Stokes/Cahn–Hilliard code to
model the phase mixing/demixing and the Rayleigh instability
of ternary mixtures using a diffuse interface model in the low
Reynolds number regime. There, applying boundary integral
methods, the effects of surfactants on drop dynamics, tip-stream-
ing and drop deformation have been investigated. Phase-field
ternary mixture models have also been of interest for modeling
many different physical phenomena, for example, solidification
and microstructure evolution in ternary alloy systems (Kobayashi
et al., 2003), mutual diffusion effects in partially miscible polymer
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blends (Tufano et al., 2010), and surfactant-induced emulsion
coarsening (Lamorgese and Banerjee, 2011).

In this work, starting from the already existent results for two
component systems (Lamorgese and Mauri, 2005), we develop a
general model of ternary mixtures, in which the Navier–Stokes
equation is coupled to generalized Cahn–Hilliard equations for
the phase variables. Compared to previous models (Kobayashi
et al., 2003; Lamorgese and Banerjee, 2011), the present one has
the advantage of simplicity and thermodynamic consistency,
without employing any ad hoc term that cannot be directly
related to macroscopic, easily measured parameters.

2. The governing equations

2.1. Multi-component mixtures at equilibrium

Consider a homogeneous mixture of N species Ak ðk¼ 1;2
. . .NÞ, with molar fractions xk, kept at temperature T and pressure
P. For sake of simplicity, in our model we assume that the
molecular weights, specific volumes and viscosities of all species
are the same, namely Mk ¼Mw, V k ¼ V and Zk ¼ Z, for all species k,
so that molar, volumetric and mass fractions are all equal to each
other, and the mixture viscosity is composition-independent. The
equilibrium state of this system is described by the ‘‘coarse-
grained’’ free energy functional, that is the molar Gibbs energy of
mixing:

Dgth ¼ gth�
XN

k ¼ 1

gkxk, ð1Þ

where gth is the energy of the mixture at equilibrium, while gk is
the molar free energy of pure species Ak at temperature T and
pressure P. The free energy Dgth is the sum of an ideal part Dgid

and a so-called excess part gex, with

Dgid ¼ RT
XN

k ¼ 1

xk log xk, ð2Þ

where R is the gas constant, while the excess molar free energy
can be expressed as

gex ¼
1

2
RT

XN

i,k ¼ 1

Cikxixk, ð3Þ

where Cik are functions of T and P, with Cik ¼Cki and Cii ¼ 0.
This expression can be generally derived by considering the
molecular interactions between nearest neighbors or summing
all pairwise interactions throughout the whole system (Lifshitz
and Pitaevskii, 1984). As shown by Mauri et al. (1996), Eq. (3) can
also be derived from first principles, assuming that the pairwise
forces between identical molecules, Fi,i are all equal to each other
and larger than the pairwise forces among unequal molecules, Fi,j

(with ia j), i.e. Fi,i ¼ Fj,j4Fi,j, obtaining an expression for Cij

which depends on ðFi,i�Fi,jÞ. In the following, we shall assume
that P is fixed, so that the physical state of the mixture at
equilibrium depends only on T and xi.

Now, it is well known that any variation of the molar free
energy can be written as (Prausnitz et al., 1986)

dgth
¼ RT

XN

i ¼ 1

mth
i dxi, ð4Þ

where mth
i denotes the chemical potential of species Ai in solution, i.e.

mth
i ¼

1

RT

@ðcgthÞ

@ci
, ð5Þ

with ci ¼ cxi denoting the mole densities, that is the number of moles
per unit volume, of species Ai, and c¼

P
ci is the total mole density.

In our case, by using Eqs. (1)–(3), we obtain

mth
i ¼

gi

RT
þ log xiþ

XN

k ¼ 1

Cikð1�xiÞxk�
XN

j,ka i ¼ 1

Cjkxjxk: ð6Þ

Since free energy is an extensive quantity, it is easy to show that
chemical potentials represent the amount of free energy due to each
species, i.e.

gth ¼ RT
XN

i ¼ 1

mth
i xi: ð7Þ

Therefore, comparing Eqs. (4) and (7), we obtain the Gibbs–Duhem
relation:

XN

i ¼ 1

xi dmth
i ¼ 0: ð8Þ

Considering that
PN

i ¼ 1 xi ¼ 1, we see that Eq. (4) can be
rewritten as

dgth
¼ RT

XN�1

i ¼ 1

mth
iN dxi, ð9Þ

where mth
ij � m

th
i �m

th
j . Accordingly, we see that the quantities xi

and RTmth
iN are thermodynamically conjugated, i.e. RTmth

iN ¼

@geq=@xi. In fact, applying this expression, we obtain

mth
ij ¼ ln

xi

xj
þCijðxj�xiÞþ

XN

ka i,j ¼ 1

ðCik�CjkÞxk, ð10Þ

where, by definition, mth
ij � m

th
ik�m

th
jk and mth

ij ¼�m
th
ji . The same result

could be obtained directly from Eq. (6).

2.2. Non-local terms

In order to take into account the effects of spatial inhomo-
geneities, following Cahn and Hilliard (1958, 1959), we assume
that the total, or generalized, free energy ~g is the sum of an
equilibrium part and a non-local part:

~g ¼ gthþgnl, ð11Þ

where the latter is given by the following expression:

gnl ¼
1

4
RTa2

XN

i ¼ 1

ðrxiÞ
2: ð12Þ

Here a represents typical length of spatial inhomogeneities in the
composition which, as shown by van der Waals (1893), is propor-
tional to the surface tension between the two phases. Note that,
considering that

PN
i ¼ 1 xi ¼ 1, this expression can also be written as

gnl ¼�
1

2
RTa2

XN

ia j ¼ 1

rxirxj ¼
1

2
RTa2

XN�1

i ¼ 1

rxi

XN�1

jZ i

rxj

0
@

1
A: ð13Þ

Now, chemical potentials can be generalized as follows:

~m i ¼
1

RT

dðc ~gÞ
dci
¼ mth

i þm
nl
i , ð14Þ

where mth
i is defined in Eq. (5), while,

mnl
i ¼�

1

RT
r �

@ðcgnlÞ

@rci

� �
: ð15Þ

Consequently we obtain

mnl
i ¼

a2

2
r � �ð1�xiÞrxiþ

XN

ja i ¼ 1

xjrxj

2
4

3
5: ð16Þ
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