Accepted Manuscript

Ag-Co3O4: Synthesis, characterization and evaluation of its photo-catalytic activity towards degradation of rhodamine B dye in aqueous medium

Muhammad Saeed, Majid Muneer, Mohsin Siddique, Muhammad Hamayun, Nadia Akram, Nida Mumtaz

PII: S1004-9541(17)30867-4

DOI: doi:10.1016/j.cjche.2018.02.024

Reference: CJCHE 1064

To appear in:

Received date: 7 August 2017
Revised date: 7 February 2018
Accepted date: 10 February 2018

Please cite this article as: Muhammad Saeed, Majid Muneer, Mohsin Siddique, Muhammad Hamayun, Nadia Akram, Nida Mumtaz , Ag-Co3O4: Synthesis, characterization and evaluation of its photo-catalytic activity towards degradation of rhodamine B dye in aqueous medium. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Cjche(2018), doi:10.1016/j.cjche.2018.02.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Catalysis, Kinetics and Reaction Engineering

Ag-Co₃O₄: Synthesis, characterization and evaluation of its photo-catalytic activity towards degradation of rhodamine B dye in aqueous medium

Muhammad Saeed^{1,*}, Majid Muneer¹, Mohsin Siddique², Muhammad Hamayun³, Nadia Akram¹, Nida Mumtaz¹

¹Department of Chemistry, Government College University Faisalabad, Pakistan

²Department of Chemistry, Bacha Khan University Charsadda, Pakistan

³Department of Chemistry, University of Gujrat, Hafiz Hayat Campus Gujrat, Pakistan

*Corresponding Author: msaeed@gcuf.edu.pk <u>pksaeed2003@yahoo.com</u>

ABSTRACT

Synthesis, characterization of Co_3O_4 and Ag- Co_3O_4 composites and evaluation of their photocatalytic activities towards photo-degradation of aqueous solution of rhodamine B dye under irradiation of visible light have been described in this paper. Co_3O_4 was prepared by solid phase mechano chemical process using $Co(NO_3)_2.6H_2O$ and NH_4HCO_3 as precursor materials. Ag was deposited on Co_3O_4 from $AgNO_3$ using *Calotropis gigantea* extract as reducing agent. XRD, SEM and FTIR were used for characterization of prepared composites. Photo-catalytic efficiencies of as-prepared Co_3O_4 and Ag- Co_3O_4 were evaluated for aqueous phase photodegradation of rhodamine B. It was found that deposition of Ag on Co_3O_4 highly enhanced the photo-catalytic activity of Co_3O_4 . Photo-catalytic degradation followed the Eley–Rideal mechanism. About 100% and 91% photo-degradation of 40 mL dye solution achieved at 313 K in 90 and 120 min over 0.05 g of Ag- Co_3O_4 as photo-catalyst using 100 and 200 mg/L as initial concentration of dye respectively.

Key words: Co₃O₄; Ag-Co₃O₄; Photo-catalysis; Photo-degradation; *Calotropis gigantea*;

Rhodamine B; Elay-Rideal mechanism

Download English Version:

https://daneshyari.com/en/article/6592777

Download Persian Version:

https://daneshyari.com/article/6592777

<u>Daneshyari.com</u>