Accepted Manuscript

Coupling simulation of fluid structure interaction in the stirred vessel with a pitched blade turbine

Yangyang Liang, Zhengming Gao, Daien Shi, Wanli Zhao, Ziqi Cai

PII: S1004-9541(17)31007-8

DOI: doi:10.1016/j.cjche.2017.10.026

Reference: CJCHE 979

To appear in:

Received date: 6 August 2017 Revised date: 27 September 2017 Accepted date: 13 October 2017

Please cite this article as: Yangyang Liang, Zhengming Gao, Daien Shi, Wanli Zhao, Ziqi Cai, Coupling simulation of fluid structure interaction in the stirred vessel with a pitched blade turbine. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Ciche(2017), doi:10.1016/j.ciche.2017.10.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Fluid Dynamics and Transport Phenomena

Coupling simulation of fluid structure interaction in the stirred vessel with a pitched blade turbine *

Yangyang Liang^a, Zhengming Gao^a, Daien Shi^b, Wanli Zhao^a, Ziqi Cai^{a,*}

^a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

^b Mechanical Engineering School, Yancheng Institute of Technology, Yancheng 224051, China

Abstract

The interaction between fluid and a down-pumping pitched blade turbine fixed with a flexible shaft in the stirred vessel, as a typical fluid structure interaction phenomenon, was simulated by coupling the Computational Fluid Dynamics and Computational Structural Dynamics. Based on the verification of the simulated impeller torque and dimensionless shaft bending moment with experimental result, the dimensionless shaft bending moment and various loads acting on impeller (including lateral force, axial force and bending moment) were discussed in detail. By separating and extracting the fluid and structural components from those loads, the results show that the shaft bending moment mainly results from the lateral force on impeller although the axial force on impeller is much larger. The impeller mass imbalance increases the shaft bending moment and the lateral force on impeller, but has little influence on the axial force and bending moment acting on impeller. The dominant frequencies of impeller forces are macro-frequency, speed frequency and blade passing frequency, and are associated with the impeller mass imbalance.

Keywords

Fluid structure interaction; Shaft bending moment; Impeller lateral force; Impeller axial force; Bending moment on impeller

^{*}Supported by the National Natural Science Foundation of China (21376016).

^{*} Corresponding author.E-mail address: caiziqi@mail.buct.edu.cn.

Download English Version:

https://daneshyari.com/en/article/6592857

Download Persian Version:

https://daneshyari.com/article/6592857

<u>Daneshyari.com</u>