Accepted Manuscript

Preparation of Highly Active MCM-41 Supported Ni_2P Catalysts and Its Dibenzothiophene HDS Performance

Hua Song, Qi Yu, Yanguang Chen, Yuanyuan Wang, Ruixia Niu

PII: \$1004-9541(17)30973-4

DOI: doi:10.1016/j.cjche.2017.09.001

Reference: CJCHE 914

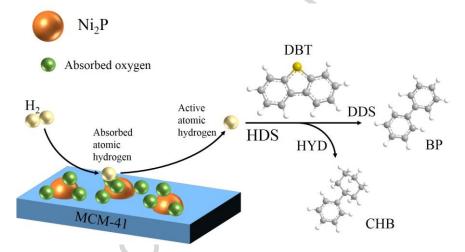
To appear in:

Received date: 28 July 2017
Revised date: 3 September 2017
Accepted date: 6 September 2017

Please cite this article as: Hua Song, Qi Yu, Yanguang Chen, Yuanyuan Wang, Ruixia Niu, Preparation of Highly Active MCM-41 Supported Ni₂P Catalysts and Its Dibenzothiophene HDS Performance, (2017), doi:10.1016/j.cjche.2017.09.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT


Catalysis, Kinetics and Reaction Engineering

Preparation of Highly Active MCM-41 Supported Ni₂P Catalysts and Its Dibenzothiophene HDS Performance[†]

Hua Song*, Qi Yu, Yanguang Chen, Yuanyuan Wang, Ruixia Niu

College of Chemistry & Chemical Engineering, Northeast Petroleum University, 199 Fazhan Rd. High-Tech Zone, China

Graphic abstract

Abstract Highly active MCM-41 supported nickel phosphide catalysts for hydrodesulfurization (HDS) were synthesized by two different phosphorus sources, in which the surface of Ni₂P catalysts were modified by air instead of being passivated by O₂/N₂ mixture. In addition, the catalysts need not activated with flowing H₂ (30 mL·min⁻¹) at 500°C for 2 h prior to reaction as traditional methods. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N₂-adsorption specific surface area measurements and CO chemisorption were used to \$\frac{1}{2}\$Supported by the National Natural Science Foundation of China (21276048), the Project of Education Department of Heilongjiang Province, China (12541060) and the Graduate Innovation Project of Northeast Petroleum University, China (YJSCX2016-019NEPU).

E-mail: songhua2004@sina.com (H.Song)

Download English Version:

https://daneshyari.com/en/article/6593058

Download Persian Version:

https://daneshyari.com/article/6593058

<u>Daneshyari.com</u>