Accepted Manuscript

A CFD model for predicting the heat transfer in the industrial scale packed bed

Baolin Hou, Renming Ye, Yanqiang Huang, Xiaodong Wang, Tao Zhang

PII: S1004-9541(17)30418-4

DOI: doi:10.1016/j.cjche.2017.07.008

Reference: CJCHE 882

To appear in:

Received date: 2 May 2017 Revised date: 12 July 2017 Accepted date: 24 July 2017

Please cite this article as: Baolin Hou, Renming Ye, Yanqiang Huang, Xiaodong Wang, Tao Zhang, A CFD model for predicting the heat transfer in the industrial scale packed bed, (2017), doi:10.1016/j.cjche.2017.07.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Fluid Dynamics and Transport Phenomena

A CFD model for predicting the heat transfer in the industrial scale packed bed

Baolin Hou, Renming Ye, Yanqiang Huang, Xiaodong Wang, Tao Zhang

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese

Academy of Sciences, Dalian 116023, P.R. China

Corresponding authors: xdwang@dicp.ac.cn

Contributed equally to this work: Baolin Hou and Renming Ye

Abstract

Compared to the traditional lumped-parameter model, computational fluid dynamics (CFD) attracted more attentions due to facilitating more accurate reactor design and optimization methods when analyzing the heat transfer in the industrial packed bed. Here, a model was developed based on the CFD theory, in which the heterogeneous fluid flow was resolved by considering the oscillatory behavior of voidage and the effective fluid viscosity. The energy transports in packed bed were calculated by the convection and diffusion incorporated with gaseous dispersion in fluid and the contacting thermal conductivity of packed particles in solids. The heat transfer coefficient between fluid and wall was evaluated by considering the turbulence due to the packed particles adjacent to the wall. Thus, the heat transfer in packed bed can be predicted without using any adjustable semi-empirical effective thermal conductivity coefficient. The experimental results from the literature were employed to validate this model.

Download English Version:

https://daneshyari.com/en/article/6593103

Download Persian Version:

https://daneshyari.com/article/6593103

<u>Daneshyari.com</u>