Accepted Manuscript

Ni nanoparticles supported on carbon as efficient catalysts for steam reforming of toluene (model tar)

Chun Shen, Wuqing Zhou, Hao Yu, Le Du

PII: S1004-9541(17)30189-1

DOI: doi:10.1016/j.cjche.2017.03.028

Reference: CJCHE 793

To appear in:

Received date: 13 February 2017 Revised date: 9 March 2017 Accepted date: 10 March 2017

Please cite this article as: Chun Shen, Wuqing Zhou, Hao Yu, Le Du, Ni nanoparticles supported on carbon as efficient catalysts for steam reforming of toluene (model tar), (2017), doi:10.1016/j.cjche.2017.03.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Catalysis, kinetics and reaction engineering

Ni nanoparticles supported on carbon as efficient catalysts for steam reforming of toluene (model tar) *

Chun Shen, Wuqing Zhou, Hao Yu, Le Du^{2,*}

¹ Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China

² The State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Membrane Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China

*Corresponding author. Email address: dule@mail.buct.edu.cn

*Support by the National Nature Science Foundation of China (21606008, 21436002), the National Basic Research Foundation of China (2013CB733600), the Fundamental Research Funds for the Central Universities (ZY1630, JD1617) and the Fundamental Research Funds for the Central Universities (buctrc201616, buctrc201617).

Abstract

This paper investigated the influences of surface properties of carbon support and nickel precursors (nickel nitrate, nickel chloride and nickel acetate) on Ni nanoparticle sizes and catalytic performances for steam reforming of toluene. Treatment with nitric acid helped to increase the amount of functional groups on the surface and hydrophilic nature of carbon support, leading to a homogeneous distribution of Ni nanoparticles. The thermal decomposition products of nickel precursor also played an important role, Ni nanoparticles supported on carbon treated with acid using nickel nitrate as the precursor exhibited the smallest mean diameter of 4.5 nm. With the loading amount increased from 6 wt% to 18 wt%, the mean particle size of Ni nanoparticles varied

Download English Version:

https://daneshyari.com/en/article/6593115

Download Persian Version:

https://daneshyari.com/article/6593115

<u>Daneshyari.com</u>