Accepted Manuscript

Substrate matters: The influences of substrate layers on the performances of thin-film composite reverse osmosis membranes

Jie Li, Mingjie Wei, Yong Wang

PII: S1004-9541(17)30093-9

DOI: doi:10.1016/j.cjche.2017.05.006

Reference: CJCHE 827

To appear in:

Received date: 28 February 2017 Revised date: 12 May 2017 Accepted date: 14 May 2017

Please cite this article as: Jie Li, Mingjie Wei, Yong Wang, Substrate matters: The influences of substrate layers on the performances of thin-film composite reverse osmosis membranes, (2017), doi:10.1016/j.cjche.2017.05.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Substrate matters: The influences of substrate layers on the performances of thin-film composite reverse osmosis membranes*

Jie Li, Mingjie Wei**, Yong Wang

State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, and College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China

Abstract Thin-film composite (TFC) reverse osmosis (RO) membranes are playing the dominating role in desalination. Tremendous efforts have been put in the studies on the polyamide selective layers. However, the effect of the substrate layers is far less concerned. In this review, we summarize the works that considering the impacts of the substrates, including pore sizes, surface hydrophilicity, on the processes of interfacial polymerization and consequently on the morphologies of the active layers and on final RO performances of the composite membranes. All the works indicate that the pore sizes and surface hydrophilicity of the substrate evidently influence the RO performances of the composites membranes. Unfortunately, we find that the observations and understandings on the substrate effect are frequently varied from case to case because of the lack of substrates with uniform pores and surface chemistries. We suggest using track-etched membranes or anodized alumina membranes having relatively uniform pores and functionalizable pore walls as model substrates to elucidate the substrate effect. Moreover, we argue that homoporous membranes derived from block copolymers have the potential to be used as substrates for the large-scale production of high-performances TFC RO membranes.

Keywords reverse osmosis; thin-film composite; interfacial polymerization; homoporous membranes; substrate effect

^{*} Supported by the National Basic Research Program of China (2015CB655301), the Jiangsu Natural Science Foundation (BK20150063), and the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

^{**} To whom correspondence should be addressed.
Email address: mj.wei@njtehc.edu.cn(M. J. Wei); yongwang@njtech.edu.cn (Y. Wang)

Download English Version:

https://daneshyari.com/en/article/6593279

Download Persian Version:

https://daneshyari.com/article/6593279

<u>Daneshyari.com</u>